Fall 2006CS 5611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion Quality of Service.

Slides:



Advertisements
Similar presentations
Slide Set 14: TCP Congestion Control. In this set... We begin Chapter 6 but with 6.3. We will cover Sections 6.3 and 6.4. Mainly deals with congestion.
Advertisements

Quality of Service CS 457 Presentation Xue Gu Nov 15, 2001.
Spring 2003CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Spring 2000CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Congestion Control Reasons: - too many packets in the network and not enough buffer space S = rate at which packets are generated R = rate at which receivers.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 20 – March 25, 2010.
ECE 4450:427/527 - Computer Networks Spring 2015
Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth Edition,Peterson.
Introduction to Congestion Control
Transport Layer: TCP Congestion Control & Buffer Management
CSS432 Congestion Control Textbook Ch6.1 – 6.4
CSS432: Congestion Control1 CSS432 Congestion Control Textbook Ch6.1 – 6.4 Professor: Munehiro Fukuda.
1 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Third Ed.,Peterson.
Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
1 Lecture 9: TCP and Congestion Control Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3.
TCP Congestion Control TCP sources change the sending rate by modifying the window size: Window = min {Advertised window, Congestion Window} In other words,
Spring 2002CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Spring 2003CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Computer Networks : TCP Congestion Control1 TCP Congestion Control.
Chapter 6 Congestion Control and Resource Allocation
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Networks : TCP Congestion Control1 TCP Congestion Control.
Networks : TCP Congestion Control1 TCP Congestion Control Presented by Bob Kinicki.
Advanced Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth.
TCP Congestion Control
Spring 2002CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
CONGESTION CONTROL and RESOURCE ALLOCATION. Definition Resource Allocation : Process by which network elements try to meet the competing demands that.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services MPLS.
Congestion Control (cont’d). TCP Congestion Control Review Congestion control consists of 3 tasks  Detect congestion  Adjust sending rate  Determine.
Fundamentals of Computer Networks ECE 478/578 Lecture #22: Resource Allocation and Congestion Control Instructor: Loukas Lazos Dept of Electrical and Computer.
Congestion Control Chapter 6 Outline Resource Allocation Issues Queuing Disciplines FCFS (FIFO queues) Priority Queuing Fair Queuing (for flows) TCP Congestion.
1 Lecture 14 High-speed TCP connections Wraparound Keeping the pipeline full Estimating RTT Fairness of TCP congestion control Internet resource allocation.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 20 – March 25, 2010.
CSS432 Congestion Control Textbook Ch6.1 – 6.4
9.7 Other Congestion Related Issues Outline Queuing Discipline Avoiding Congestion.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
Spring 2003CS 3321 Congestion Avoidance. Spring 2003CS 3322 Congestion Avoidance TCP congestion control strategy: –Increase load until congestion occurs,
Spring 2009CSE Congestion Control Outline Resource Allocation Queuing TCP Congestion Control.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 19 – March 23, 2010.
Spring 2015© CS 438 Staff - University of Illinois1 Next Topic: Vacation Planning UIUC Chicago Monterey San Francisco Chicago to San Francisco: ALL FLIGHTS.
CS 6401 Congestion Control in TCP Outline Overview of RENO TCP Reacting to Congestion SS/AIMD example.
Random Early Detection (RED) Router notifies source before congestion happens - just drop the packet (TCP will timeout and adjust its window) - could make.
Spring Computer Networks1 Congestion Control Sections 6.1 – 6.4 Outline Preliminaries Queuing Discipline Reacting to Congestion Avoiding Congestion.
Spring Computer Networks1 Congestion Control II Outline Queuing Discipline Reacting to Congestion Avoiding Congestion DECbit Random Early Detection.
Congestion Avoidance Created by M Bateman, A Ruddle & C Allison As part of the TCP View project.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
1 Lecture 15 Internet resource allocation and QoS Resource Reservation Protocol Integrated Services Differentiated Services.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
Other Methods of Dealing with Congestion
9.6 TCP Congestion Control
Congestion Control.
Congestion Control Outline Queuing Discipline Reacting to Congestion
Chapter 6 Congestion Avoidance
Congestion Control Outline Queuing Discipline Reacting to Congestion
Congestion Control Outline Queuing Discipline Reacting to Congestion
Advanced Computer Networks
CSS432 Congestion Control Textbook Ch6.1 – 6.4
ECE 4450:427/527 - Computer Networks Spring 2017
So far, On the networking side, we looked at mechanisms to links hosts using direct linked networks and then forming a network of these networks. We introduced.
Congestion Control in TCP
Other Methods of Dealing with Congestion
Advanced Computer Networks
Other Methods of Dealing with Congestion
CSS432 Congestion Control Textbook Ch6.1 – 6.4
If both sources send full windows, we may get congestion collapse
TCP Overview.
Congestion Control in TCP
University of Houston Quality of Service Datacom II Lecture 3
Congestion Control Chapter 6
Presentation transcript:

Fall 2006CS 5611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion Quality of Service

Fall 2006CS 5612 Issues Two sides of the same coin –pre-allocate resources so at to avoid congestion –control congestion if (and when) is occurs Two points of implementation –hosts at the edges of the network (transport protocol) –routers inside the network (queuing discipline) Underlying service model –best-effort –multiple qualities of service (QoS) Destination 1.5-Mbps T1 link Router Source Mbps FDDI 10-Mbps Ethernet

Fall 2006CS 5613 Framework Connectionless flows –sequence of packets sent between source/destination pair –maintain soft state at the routers Taxonomy –router-centric versus host-centric –reservation-based versus feedback-based –window-based versus rate-based Router Source Router Destination 2 1

Fall 2006CS 5614 Evaluation Fairness Power (ratio of throughput to delay) Optimal load Load Throughput/delay

Fall 2006CS 5615 Queuing Discipline First-In-First-Out (FIFO) –does not discriminate between traffic sources –drop policy (tail-drop, random early drop) Fair Queuing (FQ) –explicitly segregates traffic based on flows –ensures no flow captures more than its share of capacity –variation: weighted fair queuing (WFQ) Problem? Flow 1 Flow 2 Flow 3 Flow 4 Round-robin service

Fall 2006CS 5616 FQ Algorithm Suppose clock ticks each time a bit is transmitted Let P i denote the length of packet i Let S i denote the time when start to transmit packet i Let F i denote the time when finish transmitting packet i F i = S i + P i When does router start transmitting packet i? –if before router finished packet i - 1 from this flow, then immediately after last bit of i - 1 (F i-1 ) –if no current packets for this flow, then start transmitting when arrives (call this A i ) Thus: F i = MAX (F i - 1, A i ) + P i

Fall 2006CS 5617 FQ Algorithm (cont) For multiple flows –calculate F i for each packet that arrives on each flow –treat all F i ’s as timestamps –next packet to transmit is one with lowest timestamp Not perfect: can’t preempt current packet Example Flow 1Flow 2 (a)(b) Output F = 8 F = 10 F = 5 F = 10 F = 2 Flow 1 (arriving) Flow 2 (transmitting)

Fall 2006CS 5618 TCP Congestion Control Idea –assumes best-effort network (FIFO or FQ routers) each source determines network capacity for itself –uses implicit feedback –ACKs pace transmission (self-clocking) Challenge –determining the available capacity in the first place –adjusting to changes in the available capacity

Fall 2006CS 5619 Additive Increase/Multiplicative Decrease Objective: adjust to changes in the available capacity New state variable per connection: CongestionWindow –limits how much data source has in transit MaxWin = MIN(CongestionWindow, AdvertisedWindow) EffWin = MaxWin - (LastByteSent - LastByteAcked) Idea: –increase CongestionWindow when congestion goes down –decrease CongestionWindow when congestion goes up

Fall 2006CS AIMD (cont) Question: how does the source determine whether or not the network is congested? Answer: a timeout occurs –timeout signals that a packet was lost –packets are seldom lost due to transmission error –lost packet implies congestion

Fall 2006CS AIMD (cont) In practice: increment a little for each ACK Increment = (MSS * MSS)/CongestionWindow CongestionWindow += Increment SourceDestination … Algorithm –increment CongestionWindow by one packet per RTT (linear increase) –divide CongestionWindow by two whenever a timeout occurs (multiplicative decrease)

Fall 2006CS AIMD (cont) Trace: sawtooth behavior KB Time (seconds)

Fall 2006CS Slow Start Objective: determine the available capacity in the first place Idea: –begin with CongestionWindow = 1 packet –double CongestionWindow each RTT (increment by 1 packet for each ACK) SourceDestination …

Fall 2006CS Slow Start (cont) Exponential growth, but slower than all at once Used… –when first starting connection –when connection goes dead waiting for timeout Trace Problem: lose up to half a CongestionWindow ’s worth of data

Fall 2006CS Fast Retransmit and Fast Recovery Problem: coarse-grain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Retransmit packet 3 ACK 1 ACK 2 ACK 6 ACK 2 SenderReceiver

Fall 2006CS Results Fast recovery –skip the slow start phase –go directly to half the last successful CongestionWindow ( ssthresh )

Fall 2006CS Congestion Avoidance TCP’s strategy –control congestion once it happens –repeatedly increase load in an effort to find the point at which congestion occurs, and then back off Alternative strategy –predict when congestion is about to happen –reduce rate before packets start being discarded –call this congestion avoidance, instead of congestion control Two possibilities –router-centric: DECbit and RED Gateways –host-centric: TCP Vegas

Fall 2006CS DECbit Add binary congestion bit to each packet header Router –monitors average queue length over last busy+idle cycle –set congestion bit if average queue length > 1 –attempts to balance throughout against delay Queue length Current time Time Current cycle Previous cycle Averaging interval

Fall 2006CS DECbit (cont) Destination echoes bit back to source Source records how many packets resulted in set bit If less than 50% of last window’s worth had bit set –increase CongestionWindow by 1 packet If 50% or more of last window’s worth had bit set –decrease CongestionWindow by times

Fall 2006CS Random Early Detection (RED) Notification is implicit –just drop the packet (TCP will timeout) –could make explicit by marking the packet Early random drop –rather than wait for queue to become full, drop each arriving packet with some drop probability whenever the queue length exceeds some drop level

Fall 2006CS RED Details Compute average queue length AvgLen = (1 - Weight) * AvgLen + Weight * SampleLen 0 < Weight < 1 (usually 0.002) SampleLen is queue length each time a packet arrives MaxThresholdMinThreshold AvgLen

Fall 2006CS RED Details (cont) Two queue length thresholds if AvgLen <= MinThreshold then enqueue the packet if MinThreshold < AvgLen < MaxThreshold then calculate probability P drop arriving packet with probability P if MaxThreshold <= AvgLen then drop arriving packet

Fall 2006CS RED Details (cont) Computing probability P TempP = MaxP * (AvgLen - MinThreshold)/ (MaxThreshold - MinThreshold) P = TempP/(1 - count * TempP) Drop Probability Curve P(drop) 1.0 MaxP MinThreshMaxThresh AvgLen

Fall 2006CS Tuning RED Probability of dropping a particular flow’s packet(s) is roughly proportional to the share of the bandwidth that flow is currently getting MaxP is typically set to 0.02, meaning that when the average queue size is halfway between the two thresholds, the gateway drops roughly one out of 50 packets. If traffic id bursty, then MinThreshold should be sufficiently large to allow link utilization to be maintained at an acceptably high level Difference between two thresholds should be larger than the typical increase in the calculated average queue length in one RTT; setting MaxThreshold to twice MinThreshold is reasonable for traffic on today’s Internet Penalty Box for Offenders

Fall 2006CS TCP Vegas Idea: source watches for some sign that router’s queue is building up and congestion will happen too; e.g., –RTT grows –sending rate flattens

Fall 2006CS Algorithm Let BaseRTT be the minimum of all measured RTTs (commonly the RTT of the first packet) If not overflowing the connection, then ExpectRate = CongestionWindow/BaseRTT Source calculates sending rate ( ActualRate ) once per RTT Source compares ActualRate with ExpectRate Diff = ExpectedRate - ActualRate if Diff <  increase CongestionWindow linearly else if Diff >  decrease CongestionWindow linearly else leave CongestionWindow unchanged

Fall 2006CS Algorithm (cont) Parameters  = 1 packet  = 3 packets Even faster retransmit –keep fine-grained timestamps for each packet –check for timeout on first duplicate ACK

Fall 2006CS Realtime Applications Require “deliver on time” assurances –must come from inside the network Example application (audio) –sample voice once every 125us –each sample has a playback time –packets experience variable delay in network –add constant factor to playback time: playback point Microphone Speaker Sampler, A D converter Buffer, D A

Fall 2006CS Playback Buffer Sequence number Packet generation Network delay Buffer Playback Time Packet arrival

Fall 2006CS Example Distribution of Delays Packets (%) 90%97%98%99% Delay (milliseconds)

Fall 2006CS Integrated Services Service Classes –guaranteed –controlled-load Mechanisms –signalling protocol –admission control –policing –packet scheduling

Fall 2006CS Flowspec Rspec: describes service requested from network –controlled-load: none –guaranteed: delay target Tspec: describes flow’s traffic characteristics –average bandwidth + burstiness: token bucket filter –token rate r –bucket depth B –must have a token to send a byte –must have n tokens to send n bytes –start with no tokens –accumulate tokens at rate of r per second –can accumulate no more than B tokens

Fall 2006CS Differentiated Services Problem with IntServ: scalability Idea: segregate packets into a small number of classes –e.g., premium vs best-effort Packets marked according to class at edge of network Core routers implement some per-hop-behavior (PHB) Example: Expedited Forwarding (EF) –rate-limit EF packets at the edges –PHB implemented with class-based priority queues or WFQ

Fall 2006CS DiffServ (cont) Assured Forwarding (AF) –customers sign service agreements with ISPs –edge routers mark packets as being “in” or “out” of profile –core routers run RIO: RED with in/out P(drop) 1.0 MaxP Min in Max in Max out Min out AvgLen