The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab.

Slides:



Advertisements
Similar presentations
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Advertisements

1 Evolution of understanding of solar wind-gaseous obstacle interaction O. Vaisberg Space Research Institute (IKI), Moscow, Russia The third Moscow International.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
ISSI - 2. Solar Wind Interaction Q1: Scope of the applicability of different modelling approach Q2: Adequacy in reflecting important physics Q3: How important.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Comparing the solar wind-magnetosphere interaction at Mercury and Saturn A. Masters Institute of Space and Astronautical Science, Japan Aerospace Exploration.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Solar wind interaction with the comet Halley and Venus
Solar wind-magnetosphere coupling Magnetic reconnection In most solar system environments magnetic fields are “frozen” to the plasma - different plasmas.
Solar Flare Particle Heating via low-beta Reconnection Dietmar Krauss-Varban & Brian T. Welsch Space Sciences Laboratory UC Berkeley Reconnection Workshop.
Observation of Auroral-like Peaked Electron Distributions at Mars D.A. Brain, J.S. Halekas, M.O. Fillingim, R.J. Lillis, L.M. Peticolas, R.P. Lin, J.G.
OpenGGCM Simulation vs THEMIS Observations in an Dayside Event Wenhui Li and Joachim Raeder University of New Hampshire Marit Øieroset University of California,
Planetary Ionospheres Lecture 16
State Key Laboratory of Space Weather An inter-hemisphere asymmetry of the cusp region against the geomagnetic dipole tilt Jiankui Shi Center for Space.
O. M. Shalabiea Department of Physics, Northern Borders University, KSA.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Expected Influence of Crustal Magnetic Fields on ASPERA-3 ELS Observations: Insight from MGS D.A. Brain, J.G. Luhmann, D.L. Mitchell, R.P. Lin UC Berkeley.
Multifluid Simulations of the Magnetosphere. Final Equations Equations are not conservative except for the sum over all species Momentum is transferred.
Effects of Solar Energetic Particle Events on the Martian Surface and Atmosphere F Leblanc, DA Brain, JG Luhmann, GT Delory, RA Mewaldt, CM Cohen 2004.
Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind Q. M. Lu School of Earth and Space Science, Univ.
Crustal Fields in the Solar Wind: Implications for Atmospheric Escape Dave Brain LASP University of Colorado July 24, 2003.
Space Physics at Mars Paul Withers Journal Club Research Talk Center for Space Physics, Boston University Aims: Show students how principles.
Observations of Open and Closed Magnetic Field Lines at Mars: Implications for the Upper Atmosphere D.A. Brain, D.L. Mitchell, R. Lillis, R. Lin UC Berkeley.
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
Use of Martian Magnetic Field Topology as an Indicator of the Influence of Crustal Sources on Atmospheric Loss D.A. Brain, D.L. Mitchell, R. Lillis, R.
The Martian Ionosphere in Regions of Crustal Magnetic Fields Paul Withers, Michael Mendillo, Dave Hinson DPS 2004, Louisville, Kentucky,
How do gravity waves determine the global distributions of winds, temperature, density and turbulence within a planetary atmosphere? What is the fundamental.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Benoit Lavraud CESR/CNRS, Toulouse, France Uppsala, May 2008 The altered solar wind – magnetosphere interaction at low Mach numbers: Magnetosheath and.
3D multi-fluid model Erika Harnett University of Washington.
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
Multi-fluid MHD Study on Ion Loss from Titan’s Atmosphere Y. J. Ma, C. T. Russell, A. F. Nagy, G. Toth, M. K. Dougherty, A. Wellbrock, A. J. Coates, P.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
The ionosphere of Mars never looked like this before Paul Withers Boston University Space Physics Group meeting, University of Michigan.
Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Cold plasma: a previously hidden solar system particle population Mats André and Chris Cully Swedish Institute of Space Physics, Uppsala.
Response of the Magnetosphere and Ionosphere to Solar Wind Dynamic Pressure Pulse KYUNG SUN PARK 1, TATSUKI OGINO 2, and DAE-YOUNG LEE 3 1 School of Space.
Heliophysics Research Focus Areas for a new Heliophysics Roadmap A summary of suggested updates to the current RFA, and some possible outcomes.
Universal Processes in Neutral Media Roger Smith Chapman Meeting on Universal Processes Savannah, Georgia November 2008.
Escaping ions over polar cap. Inner magnetosphere, Bow shock/Foreshock, and Ancient magnetosphere.
ESS 7 Lecture 13 October 29, 2008 Substorms. Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite.
1 MAVEN PFP ICDR May 23-25, 2011 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Particles and Fields Science Critical Design Review May ,
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
The effects of the solar wind on Saturn’s space environment
Yang Henglei( 杨恒磊 ),Wang Xiaogang( 王晓钢 ) State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams; The Department of Physics;
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Multi-Fluid/Particle Treatment of Magnetospheric- Ionospheric Coupling During Substorms and Storms R. M. Winglee.
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Plasma populations in the tail of induced magnetosphere
ARTEMIS – solar wind/ shocks
N. D’Angelo, B. Kustom, D. Susczynsky, S. Cartier, J. Willig
The Wakes and Magnetotails of Venus and Mars
Earth’s Ionosphere Lecture 13
Energy conversion boundaries
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
THEMIS Dayside Lessons learned from the coast phase and the 1st dayside season Current plans for the 2nd dayside season and the extended phases.
Dynamic Coupling between the Magnetosphere and the Ionosphere
Past cusp researches: (potentially) missing facts
Presentation transcript:

The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab

Mars in Context Comets SW EarthMoon SW SW / Earth plasma Saturn plasma / SW MarsTitan Venus

40 Years of Investigation Mariner 4,6,7, Mars 2,3, Viking 1, Phobos MGS 1997-? MEX 2003-? 1st non-terrestrial bow-shock crossing bow shocks galore! sheath sampled ionosphere profiles wake/tail studied escape products measured crustal fields discovered no significant dynamo aurora discovered low-altitude heavy ions Models Gasdynamic, MHD, hybrid, empirical, multi-fluid, … Spacecraft Milestones

The Interaction Region shock foreshock Ionopause / PEB sheath MPR / mantle / … tail wake MPB / IMB / ICB / PDB / planetopause / protonopause / magnetopause / mantle boundary / “the boundary” / … Plasma sheet Compare: fields particles waves

Upstream / Shock  || Mazelle et al., 2005 Trotignon et al., 1993 Solar Wind at 1.5 AU |B| ~ 3 nT  ~ 1 cm -3 T ~ 4 eV M A ~ 10 M MS ~ 6   Small, active shock R Mars < R Venus

Sheath MPB Pile-up region Dayside Interaction PEB exobase B - turbulent Plasma - hot SW Waves - Mirror mode B - drapes, increases Plasma - heavies effect flow B - calm Plasma - cooler, w/ heavies Waves - fast magnetosonic SW e - not allowed! Same as ionopause? Collisional atmosphere Øieroset et al., 2004 Iono- sphere Usually magnetized 10 eV100 eV Mitchell et al., 2001

Nightside Interaction protons Hot oxygen Cold oxygen Little/no ionosphere Plasma sheet Kallio, 2001 Brain et al., 2005

Crustal Fields Perturb Boundaries Change Topology Crider et al., 2004 MPB AltitudeClosed Flux Tubes Brain et al., 2005

Variability Crider et al., 2003 MPB Altitude Brain et al., 2005 MPB Altitude Brain et al., 2005 Open Flux Tubes Lat Lon Westward IMF Eastward IMF Mitchell, 2003 PEB Altitude Pressure IMF Direction EUV Season

Simulations Approaches Gasdynamic, MHD, Non-ideal MHD, Hybrid, … Goals Escape, Boundaries, Topology, Ionosphere, Detailed physics, Prediction, … Brecht et al., 2004 Harnett and Winglee, 2003; 2005 Ma et al., 2004 Terada et al., 2005 Modolo et al., 2005

Escape to Space Want to Know: — Processes — Variability — Products — Quantity Measurements — Phobos — MEX Simulations neutral ion ≈ 1 ton/hr Kallio et al., 1995

Upper Atmosphere Effects Energy deposition Structure Dynamics Chemistry Aurora Leblanc et al., 2002 Brain et al., 2005 Law and Cloutier, 1997 Withers et al., 2005 Krymskii et al., 2002 ENAs SEPs EUV Vertical Field Horizontal field

Fundamental Plasma Processes reconnection potential current acceleration instabilities Espley et al., 2005

Frontiers Escape MPB Physics Auroral Physics Space Weather Asymmetries Fluid vs. Kinetic Crustal Influence ER background SW Pressure MEX Event Brain et al., 2005 Ferguson et al., 2005 Bertucci et al., 2005

Summary 1.The Martian interaction is unique and highly variable. Key factors: Planetary size, SW at 1.5 AU, crustal fields 2.Understanding the interaction helps with many “Big Picture” questions. Climate evolution; Upper atmospheric structure and dynamics; Plasma physics in the solar system and universe 3.Many outstanding questions remain. Need further analyses, measurements, and models Here’s to 40 more years!