Chiral Dynamics How s and Why s 2 nd lecture: Goldstone bosons Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.

Slides:



Advertisements
Similar presentations
Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons.
Advertisements

1. Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak.
The electromagnetic (EM) field serves as a model for particle fields
Lecture 10: Standard Model Lagrangian The Standard Model Lagrangian is obtained by imposing three local gauge invariances on the quark and lepton field.
What is symmetry? Immunity (of aspects of a system) to a possible change.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
The electromagnetic (EM) field serves as a model for particle fields  = charge density, J = current density.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Chiral Dynamics How s and Why s 3 rd lecture: the effective Lagrangian Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
Smashing the Standard Model: Physics at the CERN LHC
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Chiral Dynamics How s and Why s 1 st lecture: basic ideas Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
Modern Physics LECTURE II.
Eightfold Way (old model)
Chiral Dynamics How s and Why s 4 th lecture: a specific example Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
Symmetries and conservation laws
Quantum Electrodynamics Dirac Equation : spin 1/2.
An Introduction to Field and Gauge Theories
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
“Time-reversal-odd” distribution functions in chiral models with vector mesons Alessandro Drago University of Ferrara.
Lecture 5 – Symmetries and Isospin
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
A Composite Little Higgs ZACKARIA CHACKO UNIVERSITY OF MARYLAND, COLLEGE PARK Puneet Batra.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
1 FK7003 Lecture 6 ● Isospin ● SU(2) and SU(3) ● Parity.
Eightfold Way (old model)
P Spring 2003 L5 Isospin Richard Kass
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Quarknet Syracuse Summer Institute Strong and EM forces 1.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Multiplet Structure - Isospin and Hypercharges. As far as strong interactions are concerned, the neutron and the proton are the two states of equal mass.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
Internal symmetry :SU(3) c ×SU(2) L ×U(1) Y standard model ( 標準模型 ) quarks SU(3) c leptons L Higgs scalar Lorentzian invariance, locality, renormalizability,
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
[Secs 16.1 Dunlap] Conservation Laws - II [Secs 2.2, 2.3, 16.4, 16.5 Dunlap]
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
P Spring 2002 L4Richard Kass Conservation Laws When something doesn’t happen there is usually a reason! Read: M&S Chapters 2, 4, and 5.1, That something.
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
} } Lagrangian formulation of the Klein Gordon equation
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
Lecture from Quantum Mechanics. Marek Zrałek Field Theory and Particle Physics Department. Silesian University Lecture 6.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
The quark model FK7003.
Spontaneous Symmetry Breaking and the
Lagrange Formalism & Gauge Theories
Fundamental principles of particle physics
Construction of a relativistic field theory
Reference: “The Standard Model Higgs Boson” by Ivo van Vulpen,
Nuclear Forces - Lecture 3 -
Lecture 11 Spontaneous Symmetry Breaking
Lecture 9 Weak Neutral Currents Chapter 13 in H&M.
Handout 7 : Symmetries and the Quark Model
Canonical Quantization
Effective Theory for Mesons
Chiral Structure of Hadronic Currents
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Chiral Dynamics How s and Why s 2 nd lecture: Goldstone bosons Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006

a brief history of strong interactions 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University pre-QCD | f, i > known hadronic states H int unknown Hamiltonian (in terms of hadrons) QCD H int known Hamiltonian | f, i > unknown hadronic states (in terms of quarks) ChPT | f, i > known hadronic states H int effective Hamiltonian (in terms of hadrons)

from the  QCD to the  ChPT the ChPT not derived, but constructed the procedure based on the symmetries  ChPT shares all the symmetries of  QCD the symmetries were identified in the pre-QCD period then incorporated into and understood within the QCD the most prominent: the chiral symmetry 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University

SU(2) isospin symmetry the symmetry Why linear and unitary?So it happened. 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University Nothing to do with the superposition principle or probability conservation.

classical conservation laws 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University (Noether’s theorem) symmetryconservation lawcurrent or charge δ  = 0  μ j μ (x) = 0 j μ = δφ   /  (  μ φ ) δ  = ε  μ μ (x)  μ j μ (x) = 0 j μ = δφ   /  (  μ φ ) – μ δL = 0d t Q(t) = 0 Q =  d 3 x δφ   /  (  0 φ ) δL = ε d t  (t)d t Q(t) = 0 Q =  d 3 x δφ   /  (  0 φ ) –  δS = 0  μ I μ (x) = 0 I μ not known explicitly

the generators 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University linear field transformationφ i  T ij φ j infinitesimal transformationφ i  φ i – i ε a (t a ) ij φ j δ a φ i = – i (t a ) ij φ j Lie algebra[t a,t b ] = i f abc t c SU(2) as a special caset a = ½ τ a (Pauli matrices) conserved chargesQ a = – i  d 3 x  0 φ i (τ a ) ij φ j

the generators – another incarnation 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University quantization: linear operators φ i H Q a quantum conservation laws[H, Q a ] = 0 [P μ, Q a ] = 0 Q k ’s form the Lie algebra[Q a, Q b ] = i f abc Q c realization of the original symmetry in the Fock space in the QCD the knowledge of Q k is not sufficient for the knowledge of hadronic states transformations

transformations of states 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University Q a known explicitly in terms of quark fields |h (adron)  not known explicitly in terms of quark fields Q a | h  explicitly unknown, with the same energy e iα a Q a representation of the symmetry group e iα a Q a | h  multiplet of states with the same energy observed in the hadronic spectrum

questions and comments 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University why to bother with charges if they are of no explicit use? we are going to see some use of them shortly what about SU(3)? the same story with Pauli matrices  Gell-Mann ones what was the historical development? patterns in hadronic masses  approximate symmetries Lie groups with pertinent irreducible representations were postulated as the symmetries of strong interactions

SU(2)  SU(2) chiral symmetry the symmetry 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University chirality

the generators 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University formally: isospin + L,R t L a, t R a the Lie algebra[t L a,t L b ] = i f abc t L c [t R a,t R b ] = i f abc t R c [t L a,t R b ] = 0 useful combinationst V a =t R a +t L a t A a =t R a –t L a the Lie algebra[t V a,t V b ] = i f abc t V c [t A a,t A b ] = i f abc t V c [t V a,t A b ] = i f abc t A c

the generators – another incarnation 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University charges Q V a, Q V, Q A a, Q A conservation laws[H, Q] = 0, [P μ, Q] = 0 the Lie algebra[Q V a,, Q V b ] = i f abc Q V c etc. realization of the original symmetry in the Fock space again, the knowledge of charges is not sufficient for the knowledge of hadronic states transformations

transformations of states 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University even without the explicit knowledge of Q a | h  quite a lot can be said about the hadronic multiplets to each isospin multiplet there should be a mirror multiplet with same masses and opposite parity no trace of this in the particle spectrum! could be that axial generators just annihilate | h  states? NO! [Q A a,Q A b ] = i f abc Q V c isospin generators would also annihilate those states

spontaneous symmetry breakdown 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University Nambu (60’s) if Q a | h  = 0 does not help what about trying Q a | 0   0 (SSB) Goldstone (prior to Nambu): this leads to the existence of spinless massless particles in the theory (with the precisely given quantum numbers) this is (in a sense) observed in the hadronic spectrum the spectrum does not overrule the chiral symmetry it rather supports the symmetry (in the SSB form)

questions and comments 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University are there really any massless hadrons? pions are almost massless, with right quantum numbers the mass splitting within the flavor multiplets tells us that for strong interactions 150 MeV is a small number so the pions are close enough to masslessness what are the axial generators doing with states? they should in a sense create the Goldstone bosons but we are not able to write this down explicitly reason: not only | h  but also | 0  became complicated

even some more 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University what about U(1) V and U(1) A ? U(1) V happens to be the baryon number symmetry (easy) U(1) A happens not to survive in quantum worlds (difficult) what is the precise formulation of the Goldstone theorem? if for a Noether charge Q there is an operator A for which  0|[Q,A]|0   0 then there is a massless state |G  for which  0|j 0 |G  G|A|0   0 a simple choice of A leads to  0|[Q,A]|0  =  0|qq|0  famous condensate (here it pays off to know Q explicitly)

(almost) do it yourself  ChPT 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University we have identified the symmetries of the QCD as well as the lightest particles low-energy effective theory should start as a theory of fields of these particles sharing all the symmetries with the QCD one should start with the transformation properties of these fields and to construct the invariant  ChPT the transformation properties of Goldstone boson fields are not known explicitly!

transformations of fields 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University so far we have considered either transformations of fields or of states both were linear, for different reasons for the states the reason is the superposition principle for the quantum fields: creation operators transformed to linear combinations of the creation operators i.e. transformations do not change number of particles this is inconvenient for the axial generators Q a they should change the number of Goldstone bosons

how do the GB fields transform? 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University according to a non-linear realization of the group as to the unbroken isospin subgroup the pion triplet behaves quite ordinary so for the unbroken isospin subgroup the realization should become a linear representation there is an infinite number of such realizations becoming representation when restricted to the subgroup which one is the one?

which choice is the right one? 23 rd Students’ Workshop, Bosen, 3-8.IX.2006Martin Mojžiš, Comenius University any will do!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! they are all equivalent as to the S-matrix elements the off-shell Green functions do depend on a choice but the measurable quantities do not choose the most convenient realization of the symmetry start to build up the most general invariant Lagrangian this is going to be the topic of the 3 rd lecture