IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT GLOBAL STEPS Nicholas Souchlas (9/20/2011) 1.

Slides:



Advertisements
Similar presentations
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1. N. Souchlas BNL (Oct. 5, 2010)
Advertisements

Mercury Chamber Update V. Graves NF-IDS Meeting October 4, 2011.
IDS120j WITH/WITHOUT GAPS SH#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS Nicholas Souchlas, PBL (3/14/2012) 1.
Magnetic Configuration of the Muon Collider/ Neutrino Factory Target System Hisham Kamal Sayed, *1 H.G Kirk, 1 K.T. McDonald 2 1 Brookhaven National Laboratory,
Meson Production at 8 GeV for IDS120h X. Ding, UCLA Target Studies, Dec. 27, 2011.
Particle Production of a Carbon/Mercury Target System for the Intensity Frontier X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Spring.
Comparison of Power Depositions Xiaoping Ding UCLA Target Studies Jul. 13, 2010.
Operated by Brookhaven Science Associates for the U.S. Department of Energy A Pion Production and Capture System for a 4 MW Target Station X. Ding, D.
1Managed by UT-Battelle for the U.S. Department of Energy NF/IDS Hg Vessel Layout 30 Jun 09 Cryostat 2 Front Drain Mercury Vessel Concept Matthew F. Glisson.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Energy Deposition of 4-MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Meeting, Feb. 9, 2010.
MC/NF TARGET SHIELDING STUDIES. NICHOLAS SOUCHLAS (10/29/2010)‏ 1.
Shielding Studies using MARS Monte Carlo code Noriaki Nakao (SLAC) Jan. 6, 2005, WORKSHOP Machine-Detector Interface at ILC, SLAC.
SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS BNL Nov 30, 2010 ‏ 1.
Energy Deposition of 4MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Mar. 9, 2010 (Update of talk on Feb. 9, 2010)
Harold G. Kirk Brookhaven National Laboratory Target System Update IDS-NF Plenary Meeting Arlington, VA October 18, 2011.
Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009.
IDS-NF Target Studies H. Kirk (BNL) July 8, 2009.
1 Comparison of Power Depositions X. Ding, D. B. Cline, UCLA H. Kirk, J. S. Berg, BNL Collaboration Meeting July 2, 2010.
Comparison of Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Jun. 29, 2010.
Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Apr. 20, 2010.
1 Neutrino Factory Front End (IDS) and Variations David Neuffer November 23, 2010.
Above: On-axis field profiles of resistive, superconducting and all magnets, and bore-tube radius r = 7.5 (B/20T) −½ cm. Above: Hoop strain ε θ in resistive.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 3. NICHOLAS SOUCHLAS (10/28/2010)‏
IDS120h POWER DEPOSITION AND Hg POOL STUDIES Nicholas Souchlas (7/26/2011) 1.
Background comparison between 20 mrad and 2 mr crossings Takashi Maruyama SLAC Machine-Detector Interface Workshop SLAC January 6-8, 2005.
STUDY II: m1507 vs. m1510 IDS120f: m1507/MCNP vs. M1510/MCNP vs. FLUKA IDS120f vs. IDS20g GEOMETRY IDS90f: B10/B11 SHIELDING RING(S) STUDIES Nicholas Souchlas.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1..
Meson Productions for Target System with GA/HG Jet and IDS120h Configuration X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL Muon Accelerator.
Design of the Photon Collimators for the ILC Positron Helical Undulator Adriana Bungau The University of Manchester Positron Source Meeting, July 2008.
Energy deposition for intense muon sources (chicane + the rest of the front end) Pavel Snopok Illinois Institute of Technology and Fermilab December 4,
IDS120j WITHOUT GAPS AND WITH MAXIMUM SIZE GAPS ( aka ''NIGHTMARE'' CASE SCENARIO ) SC#4, SC#7 AZIMUTHAL DPD DISTRIBUTION ANALYSIS. Nicholas Souchlas,
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS EFFECTS OF Be WINDOW WATER.
SHIELDING STUDIES FOR THE MUON COLLIDER TARGET. (From STUDY II to IDS120f geometries) NICHOLAS SOUCHLAS (BNL)‏ ‏ 1.
Shifting the Position of Focal Point of Proton Beam Relative to Intersection Point with Fixed Emittance for IDS120h Configuration X. Ding, UCLA Target.
DEPOSITED POWER STUDIES FOR THE MC/NF TARGET STATION. Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012) 1 DEPOSITED POWER STUDIES FOR THE MC/NF TARGET.
1 Energy Deposition of 4MW Beam Power in a Mercury Jet Target X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL The International Design Study for the.
IDS120j WITH GAPS SC#3 AZIMUTHAL DPD DISTRIBUTION ANALYSIS WITH MAX GAPS SC#3, SC#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS, DP AND SC TOTAL DP WITH VARYING.
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS. BP#1(STST/W), SH#1, BeWindow,SC#8.
Particle Production at 3 GeV (update) X. Ding, UCLA Target Studies Sept. 23, /23/13.
KT McDonald MAP Front End Meeting March 3, Finalizing the C- and Hg-Target Configurations for 6.75-GeV Proton Beams Present studies are for a carbon.
Target Magnets & Shielding Bob Weggel Particle Beam Lasers, Inc. Magnet Optimization Research Engineering, LLC. March 5,
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE mars1510 ( DESKTOP ) vs. mars1512 ( PRINCETON CLUSTER ) Nicholas Souchlas, PBL (3/28/2012) 1.
Activation around dump shielding, and design of beam line mask Mathieu Baudin, RP Genevieve Steele, EN-STI Helmut Vincke, RP.
Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies April 3, /3/14.
Beam Dump for Carbon Target with IDS120h Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies Jan. 24, /24/14.
Particle Production with Carbon Target and IDS120j Configuration at 3 GeV (update) X. Ding, UCLA Target Studies Nov. 14, /14/13.
Kinetic Energy Spectra of pi +, pi -, mu +, mu - and sum of all from the 20to4T5m Configuration X. Ding Front End Meeting June 23,
Meson Production of Carbon Target at 3 GeV X. Ding, UCLA Target Studies 17/18/13.
IDS120j WITHOUT RESISTIVE MAGNETS ( 20 cm GAPS AND 15.8 g/cc W BEADS ) AZIMUTHAL DPD DISTRIBUTION STUDIES FOR: BP#1, SH#1, SHVS#1/LFL, SC#1+SC#2, BeWind.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
Multiprocessing/MARS15(2012)/Princeton Cluster (IDS120j w/t Resistive Magnets: New Hg Module) X. Ding UCLA (4/11/2013)
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE Nicholas Souchlas, PBL (11/1/2012) 1.
IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION, III ( 20 cm GAPS BETWEEN CRYOSTATS ) Nicholas Souchlas, PBL (9/4/2012)
IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH STST SHIELDING VESSELS. Hg vs. Ga DEPOSITED POWER DISTRIBUTION. (using Ding's optimized parameters)
BNL neutrino beam. Optimization and simulations Milind Diwan June 10.
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BEAM PIPE BEYOND FIRST CRYOSTAT ( 20 cm GAPS AND 15.8 g/cc W BEADS ) Nicholas Souchlas, PBL.
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BP#2 WITHIN FIRST CRYOSTAT AND RIGHT FLANGE OF Hg POOL INNER VESSEL ( 20 cm GAPS AND 15.8 g/cc.
Neutrino Factory Target Vessel Concept Update V. Graves Target Studies EVO June 12, 2012.
Ids120h_side. ids120h_top ids120h_iso ids120h_end.
BNL solenoid capture workshop: magnet challenges are not trivial Summarized by Tengming Shen
SHIELDING STUDIES FOR IDS80 (NO IRON PLUG/YOKE), ADDING SHIELDING IN 75 TO 80 cm (WC/H 2 O, B, Cd). NICHOLAS SOUCHLAS (BNL) Dec. 14, 2010‏ ‏ 1.
ENERGY FLOW AND DEPOSITION IN A 4-MW MUON-COLLIDER TARGET SYSTEM
IDS120h: PROTON P0-P14 TRAJECTORY FOOTPRINT
X. Ding, UCLA MAP Spring 2014 Meeting May 2014 Fermilab
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE
1 Nicholas Souchlas, PBL (11/15/2011)
1 Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012)
GAMOS tutorial Shielding Exercises
Guidance for hands-on exercise Neutron target
Presentation transcript:

IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT GLOBAL STEPS Nicholas Souchlas (9/20/2011) 1

IDS120h:detailed calculation of TDP for Be window, studies with different STEPEM, STEPH global steps, and introducing shielding vessels. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING: 60%WC+40%H 2 O >4 MW proton beam, Np=100,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. 2

IDS120h geometry. SC#1 NOW THE BIGGEST COIL EXTENDED FURTER UPSTREAM RS FURTER AWAY FROM Hg POOL GAP, JET AND PROTON BEAM 3

4 Be Window detail: 1 cm vacuum regions before and after the window (VAC1, VAC2) used for detail studies of the TDP in Be Window. SAME LOCAL STEPS USED IN ALL THREE REGIONS AND ON THE Be/VAC INTERFACES: FOR LOCAL MTSM=0.001 cm MTSH=0.001 cm TDP=3.82 kW BEFORE FOR GLOBAL STEPEM=0.01 cm STEPH=3.0 cm TDP=0.86 kW FLUCKA TDP=2.1 kW (P6 UN-OPTIMIZED POINT, OLD POOL GEOMETRY,IDS120f) SH=SHIELDING AREAS SC=SUPER CONDUCTING COIL 6 mm Be Window VAC1VAC2 6 mm Be Window Hg Pool SC8 SC 7 SC 6 SH 2 SH 4 SH 3

IDS120h:SHIELDING VESSELS. RESULTS FOR 0.5 cm THIKNESS VESSELS KEEPING BP SC1: kW SC2: 0.01 kW SC3: kW SC TOT: kW Peak SC1: 0.04 mW/g SC3: mW/g BP2(1 cm)~191 kW DETAILS TO BE ADDED... W 10 cm 6 cm 2 cm 3 cm 10 cm 15 cm 3 cm 10 cm 2 cm 1 cm 5 Bob Weggel(7/26/11) 4 cm 5 cm 2 cm 5 cm SH2 SC7 SH1 SH4 SH3 RS:1-5 SC1 SC2 SC3 SC4 SC5 SC6 #WHAT IS THE DISTANCE BETWEEN VESSELS WALLS AND RS? #THE SH3 VESSEL HAS 2 cm WALLS? #BP IS NOW PART OF SHIELDING VESSELS SH1, SH2, SH3 WITH THE GIVEN THIKNESS? #IF NOT, IS THERE SOME SPACE BETWEEN BP AND VESSELS WALLS? BP1? BP3 BP2? 2 cm

STUDIES WITH DIFFERENT STEPS STEPEM, STEPH STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH FOR PARTICLES TRACKING=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE +/-=MORE/LESS THAN THE STANDARD CASE. 1. STEPEM=0.001 cm, STEPH=3.0 cm---->SC~+0.08 kW ---->RS, BP, HgTarg, HgPool.~SAME±2-4 kW, BeWind.~SAME ---->SH~-7.5 kW, ---->SH1 Peak~ mW/g 2. STEPEM=0.1 cm, STEPH=3.0 cm ---->SC~-0.07 kW ---->RS, BP, HgTarg, HgPool~SAME±2-4 kW ---->SH~-6.6 kW, BeWind.~+0.5 kW ---->SH1 Peak~ mW/g 3. STEPEM=0.01 cm, STEPH=1.0 cm ---->SC~-0.07 kW ---->RS, HgTarg, HgPool~SAME±2-4 kW ---->SH~-15 kW, BeWind.~+0.5 kW, BP~+15.5 kW ---->SH1 Peak~-0.01 mW/g 4. STEPEM=0.01 cm, STEPH=5.0 cm ---->SC~-0.05 kW ---->BP, HgTarg, HgPool~SAME±2-4 kW, BeWind.~SAME ---->SH~-28 kW, RS~+24.0 kW ---->SH1 Peak~-0.02 mW/g STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC, RS, HgTarg, HgPool, BeWind.~SAME, ---->SH~50 kW LESS STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC, RS, HgTarg, HgPool, BeWind.~SAME, ---->SH~50 kW LESS STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC, RS, HgTarg, HgPool, BeWind.~SAME, ---->SH~50 kW LESS STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC, RS, HgTarg, HgPool, BeWind.~SAME, ---->SH~50 kW LESS 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC, RS, HgTarg, HgPool, BeWind.~SAME, STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC~0.08 kW MORE ---->RS, HgTarg, HgPool, BeWind.~SAME±2-3 kW ---->SH~50 kW LESS 2. STEPEM=0.1 cm STEPH=3.0 cm ---->SC~0.07 kW LESS ---->SH,RS, HgTarg, HgPool~SAME±2-3 kW ---->BeWind.~0.5 kW MORE 2. STEPEM=0.01 cm STEPH=3.0 cm ---->SC~0.07 kW LESS ---->SH,RS, HgTarg, HgPool~SAME±2-3 kW ---->BeWind.~0.5 kW MORE STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC~+0.08 kW ---->RS, BP, HgTarg, HgPool.~SAME±3-4 kW ---->SH.~-7.5 kW ---->BeWind.~SAME ---->SH1 Peak~ mW/g 2. STEPEM=0.1 cm STEPH=3.0 cm ---->SC~-0.07 kW ---->RS, HgTarg, HgPool~SAME±3-4 kW ---->BeWind.~+0.5 kW ---->SH1 Peak~ mW/g 3. STEPEM=0.01 cm STEPH=1.0 cm ---->SC~-0.07 kW ---->SH~-15 kW RS, HgTarg, HgPool~SAME±2-3 kW ---->BeWind.~0.5 kW MORE 4. STEPEM=0.01 cm STEPH=5.0 cm ---->SC~0.07 kW LESS ---->SH,RS, HgTarg, HgPool~SAME±2-3 kW STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE +/-=MORE/LESS THAN THE STANDARD CASE. 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC~+0.08 kW ---->RS, BP, HgTarg, HgPool.~SAME±2-4 kW, ---->SH~-7.5 kW, BeWind.~SAME ---->SH1 Peak~ mW/g 2. STEPEM=0.1 cm STEPH=3.0 cm ---->SC~-0.07 kW ---->RS, BP, HgTarg, HgPool~SAME±2-4 kW ---->SH~-6.6 kW, BeWind.~+0.5 kW ---->SH1 Peak~ mW/g 3. STEPEM=0.01 cm STEPH=1.0 cm ---->SC~-0.07 kW ---->RS, HgTarg, HgPool~SAME±2-4 kW ---->SH~-15 kW, BeWind.~+0.5 kW, BP~+15.5 kW ---->SH1 Peak~-0.01 mW/g 4. STEPEM=0.01 cm STEPH=5.0 cm ---->SC~-0.05 kW ---->HgTarg, HgPool~SAME±2-4 kW, BeWind.~SAME ---->SH~-28 kW, BeWind.~SAME, BP~+15.5 kW, BP~+15.5 kW STEPEM=FOR THE ACCURACY OF LOCALIZATION OF BOUNDARIES FOR THE PARTICLE TRANSPORT CODE=0.01 cm (DEFAULT) STEPH=GLOBAL PILOT STEP LENGTH=3.0 cm SC=SUPER COND. COILS, RS=RESISTIVE COILS, SH=SHIELDING, BP=BEAM PIPE +/-=MORE/LESS THAN THE STANDARD CASE. 1. STEPEM=0.001 cm STEPH=3.0 cm---->SC~+0.08 kW ---->RS, BP, HgTarg, HgPool.~SAME±2-4 kW, ---->SH~-7.5 kW, BeWind.~SAME ---->SH1 Peak~ mW/g 2. STEPEM=0.1 cm STEPH=3.0 cm ---->SC~-0.07 kW ---->RS, BP, HgTarg, HgPool~SAME±2-4 kW ---->SH~-6.6 kW, BeWind.~+0.5 kW ---->SH1 Peak~ mW/g 3. STEPEM=0.01 cm STEPH=1.0 cm ---->SC~-0.07 kW ---->RS, HgTarg, HgPool~SAME±2-4 kW ---->SH~-15 kW, BeWind.~+0.5 kW, BP~+15.5 kW ---->SH1 Peak~-0.01 mW/g 4. STEPEM=0.01 cm STEPH=5.0 cm ---->SC~-0.05 kW ---->HgTarg, HgPool~SAME±2-4 kW, BeWind.~SAME ---->SH~-28 kW, BeWind.~SAME, BP~+15.5 kW, BP~+15.5 kW 6