GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.

Slides:



Advertisements
Similar presentations
Advanced GAmma Tracking Array
Advertisements

Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Bordeaux Meeting June 6-7th, 2005 Meeting starts at 2:30 pm, Monday June 6th 1)Summary of EURONS meeting (February 2005, Madeira) 2)Discussion of ACTAR.
Task10 : Physics & Instrumentation Subtask: Single Particle & Collective Properties ( Contributors: Angela Bonaccorso, Roy Lemmon, Valerie Lapoux, Yorick.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
R3B p,A scattering at intermediate energies : 700 MeV/u Low momentum transfer : -t < 0.05 (GeV/c) ̂ 2 Exotic nuclei with T(1/2) < 1 sec. Example:
CR RESR NESR  Light-ion scattering Elastic (p,p), ( ,  ) … Inelastic (p,p’), ( ,  ’)... Charge exchange (p,n), ( 3 He,t), (d, 2 He) … Quasi-free (p,pn),
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Transfer reactions Resonant Elastic scattering Inelastic scattering: GR.
RESMDD'02 pCT: Hartmut F.-W. Sadrozinski, SCIPP INITIAL STUDIES on PROTON COMPUTED TOMOGRAPHY USING SILICON STRIP DETECTORS L. Johnson, B. Keeney, G. Ross,
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Design study for a 4  ancillary detector for light charged particles to be used together with  -ray arrays in fusion-evaporation and direct reactions.
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
R&D for R3B/EXL silicon spectrometers, ELISe in-ring instrumentation based on planar Si and CVDD Alexander Gorshkov Flerov Laboratory of Nuclear Reactions.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Preliminarily results of Monte Carlo study of neutron beam production at iThemba LABS University of the western cape and iThemba LABS Energy Postgraduate.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
From CATE to LYCCA Mike Taylor Particle Identification After the Secondary Target.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Reactions Sample.
Single-neutron structure of neutron-rich nuclei near 132 Sn Jolie A. Cizewski Department of Physics & Astronomy Rutgers University.
Development of the neutron counters for the Spin dipole resonance Kazuhiro Ishikawa.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Digital analysis of scintillator pulses generated by high-energy neutrons. Jan Novák, Mitja Majerle, Pavel Bém, Z. Matěj 1, František Cvachovec 2, 1 Faculty.
Semiempirical MonteCarlo for FAZIA Napoli, 3-5 October, 2007 Giovanni Casini INFN Florence Silvia Piantelli and Giovanni Casini.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Yury Gurchin June 2011 MEASUREMENT OF THE CROSS-SECTION IN DP-ELASTIC SCATTERING AT THE ENERGIES OF 500 AND 880 MEV AT NUCLOTRON.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Simulation of the energy response of  rays in CsI crystal arrays Thomas ZERGUERRAS EXL-R3B Collaboration Meeting, Orsay (France), 02/02/ /03/2006.
Neutron detector developments at LPC Caen  -delayed neutron detectors  current limitations  future issues Search for new solid scintillators (Neutromania)
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
PRESORT OF THE DATA OF THE COLOGNE TEST EXPERIMENT ● Quality and integrity of data ● Detector numbering and positions ● Calibrations and gain stability.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
1 Cost Room Availability Passive Shielding Detector spheres for accelerators Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh).
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
HP SURVEY INSTRUMENT CALIBRATION AND SELECTION PRINCIPLES OF RADIATION DETECTION AND QUANTIFICATION CHAPTER 5 – REVIEW AND SUMMARY January 13 – 15, 2016.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
100MeV/u 12 C+ 12 C Scattering at RCNP Weiwei Qu 、 Gaolong Zhang 、 Satoru Terashima 、 Isao Tanihata 、 Chenlei Guo 、 Xiaoyun Le 、 Hoo Jin Ong 、 Harutaka.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Michael Bendel intrinsic phoswich conzept – CALOR 2014 – Gießen 1 Michael Bendel Physik-Department E12 Technische Universität München a new technique for.
E.C. AschenauerEIC INT Program, Seattle Week 81.
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Efficient transfer reaction method with RI BEams
School of Physics and Nuclear Energy Engineering
Efficiency versus energy resolution
Development of a Compton Camera for online range monitoring
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
LaBr3 Ball at HIE-ISOLDE
How to detect protons from exclusive processes
Geometry of experimental setup for studies of inverse kinematics reactions with ROOT Students*: Dumitru Irina, Giubega Lavinia-Elena, Lica Razvan, Olacel.
Target and detectors 9Li 11Li n n Coulomb breakup Target nucleus
GEANT Simulations and Track Reconstruction
Naohito Iwasa Dept. Phys., Tohoku Univ.
Direct Measurement of the 8Li + d reactions of astrophysical interest
Efficiency versus energy resolution
GRETINA experiments with fast beams at NSCL
Presentation transcript:

GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS

PHYSICS CASE : DIRECT REACTION STUDIES Key experiments: Mapping of single-particle energies using transfer reactions 78 Ni(d,p) MeV/u 132 Sn(d,p) MeV/u Reactions : Elastic and inelastic scattering Transfer reactions A SUB-TASK: SINGLE-PARTICLES and COLLECTIVE PROPERTIES Integrated particle and gamma detection system : Direct reactions studies

Detection challenges for (d,p) reactions 78 Ni(d,p) MeV/u A Challenges: Kinematics compression ->Ep good resolution States separated by 1 MeV ->~200 keV in Ep Covers large range in θ _lab(deg) ->4pi ang cover Deposit of low Energy->Threshold problems Doppler Broadening Measurements->Obervables Ep and/or E  ->Ex θ p -> d σ/d  -> (l, SF) θ _lab(deg) Energy (MeV)

B. Integrated particle and gamma detection system : Direct reactions studies PARTICLES TO BE DETECTED : Beam-like particles Spectrometer Charged Particles Particle Array Solid-angle of 4  PID with (  x~0.1,0.5 mm and  ~ 1-5 mrad) Large dynamic range with PID to Z=10 Gamma and fast charged particles Gamma Array Solid-angle of 4  Best efficiency and resolution PID with (  x~0.1,0.5 mm and  ~ 1-5 mrad) Particle Array Gamma Array RIBs Ancillary detectors: Spectrometer, Neutron array, …

78 Ni(d,p) AMeV Particle array (Simulations)

PARTICLE ARRAY: Simple Geometry Distance to (0,0,0) = 5 cm Box of 4 Silicon detectors : Area =10*10 cm2 Detector Thickness =400um Isotropic source: protons kinematics from reaction placed at (0,0,0) No target X Z Y INPUT: Energy Resolution Strip pitch size Thickness detector (punch through) Target thickness effect STUDY of the  θ and  Ex

PARTICLE ARRAY: Energy Resolution Energy (MeV) θ _lab(deg) 10 keV 50 keV100 keV Energy and angle correlated -> need to fix one variable, Eproton Ep=2,3,4,5,6 MeV ->  θ and  Ex (FWHM)  E= 50 keV reasonable value

PARTICLE ARRAY: Angular Resolution Unnoticeable dependence with the strip sizes explored. If Strip pitch ~ 1mm ->number of channels for 10 cm detector 100*100= detectors =6x10000 channels (pad-type detector)

200 μm thick 400 μm thick μm thick ~ 40 times thicker t The tickness determines the upper limit in Total energy and angle before the particles punch-through. The energy rises steadily and therefore not much gain in angular distributions PARTICLE ARRAY: Thickness detector

PARTICLE ARRAY: Ex Resolution Ex=f(Ep, θ ) Strip size small influence on the Ex resolution

PARTICLE ARRAY: Target Effect Effect of the angular and energy loss straggling on the  θ,  Ex X Y Z Target thickness 0.5 mg/cm2 1 mg/cm2 2 mg/cm2 Isotropic source of (0,0,0) Strip pitch and thickness fixed = 1mm, 400μm

PARTICLE ARRAY: Angular Resolution (target in) At high energies, emission angles close to 90 degrees, protons see more material

PARTICLE ARRAY: Ex Resolution (target in)  Ex ~ 140 keV (0.5mg/cm2)  Ex ~ 170 keV (1mg/cm2)  Ex ~ 225 keV (2mg/cm2) for 4MeV

PARTICLE ARRAY: Excited States (no target) 79 Ni 1 MeV 2 MeV 78 Ni(d,p) 79 Ni * (Ex=1,2 MeV)

PARTICLE ARRAY: Excited States (target in) 79 Ni 1 MeV 2 MeV 78 Ni(d,p) 79 Ni * (Ex=1,2 MeV) 0.5 mg/cm21 mg/cm22 mg/cm2 Effect of the target thickness in the Energy- Angle distributions: Punch-through at lower Ep Low the Ep due to the energy loss ->threshold Increases the  Ep -> difficult to separate states

PARTICLE ARRAY: Excited States (target in) Thicker target worsens the resolution in Ex

FURTHER WORK  Study of the influence of the interaction point  Full geometry implementation of the integrated charge particle and gamma particle  Cross Sections implementation  Reconstruction with CsI

78 Ni(d,p) 79 Ni at 10 AMeV Gamma array (simulations)

GAMMA ARRAY: VALUES OF GAMMA RAYS IN THE LAB : DOPPLER SHIFT Θ lab(degrees)  ~ 0.2 -> 10 AMeV E  =4 MeV -> [3.4,4.8] MeV  ~ 0.3 -> 35 AMeV E  =4 MeV -> [2.9,5.4] MeV  E  /E  tot ~  E  /E  int +  E  /E  dop

GAMMA ARRAY: RESOLUTION: DOPPLER BROADENING Θ lab(degrees)  E  /E  (%) E  lab = f( θ,  ) ->  E  /E  dop ~ f( θ )  E  /E  ~ 0.5 % E=1MeV -> 5 keV  θ ~ 2 o D=8 cm Crystal Size  θ 2.8 mm 2 o 3mm for a detector size of 12cm ->40x40 =1600 ch detector 6 detectors ->6x 1600=9600 channels

GAMMA ARRAY: RESOLUTION: INTRINSIC  E  /E  int ~ F. Notaristefani NIM A480 (2002) Other materials: LaBr3(Ce),LaCl2 To be studied  E  /E  int ~ 50 keV

Distance to (0,0,0) = 8 cm Array of CsI detectors : Area =10*10 cm2 Detector Thickness = 20 cm Isotropic source gammas 1MeV at (0,0,0) GAMMA ARRAY: Simple Geometry

FURTHER WORK  Study of different materials  Influence of the particle detector in the gamma detection system