Fighting Byzantine Adversaries in Networks: Network Error-Correcting Codes Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi.

Slides:



Advertisements
Similar presentations
Attacking Cryptographic Schemes Based on Perturbation Polynomials Martin Albrecht (Royal Holloway), Craig Gentry (IBM), Shai Halevi (IBM), Jonathan Katz.
Advertisements

Packing Multicast Trees Philip A. Chou Sudipta Sengupta Minghua Chen Jin Li Kobayashi Workshop on Modeling and Analysis of Computer and Communication Systems,
On error and erasure correction coding for networks and deadlines Tracey Ho Caltech NTU, November 2011.
1 Index Coding Part II of tutorial NetCod 2013 Michael Langberg Open University of Israel Caltech (sabbatical)
José Vieira Information Theory 2010 Information Theory MAP-Tele José Vieira IEETA Departamento de Electrónica, Telecomunicações e Informática Universidade.
Qiwen Wang, Sidharth Jaggi, Shuo-Yen Robert Li Institute of Network Coding (INC) The Chinese University of Hong Kong October 19, 2011 IEEE Information.
D.J.C MacKay IEE Proceedings Communications, Vol. 152, No. 6, December 2005.
Network coding techniques Elena Fasolo Network coding techniques Elena Fasolo PhD Student - SIGNET Group Wireless Systems - Lecture.
Information Theoretical Security and Secure Network Coding NCIS11 Ning Cai May 14, 2011 Xidian University.
Low Complexity Encoding for Network Codes Yuval Cassuto Michelle Effros Sidharth Jaggi.
1 Crosslayer Design for Distributed MAC and Network Coding in Wireless Ad Hoc Networks Yalin E. Sagduyu Anthony Ephremides University of Maryland at College.
1 Network Coding: Theory and Practice Apirath Limmanee Jacobs University.
Dynamic Index Coding User set N Packet set P Broadcast Station N N p p p Michael J. Neely, Arash Saber Tehrani, Zhen Zhang University.
1 Cooperative Communications in Networks: Random coding for wireless multicast Brooke Shrader and Anthony Ephremides University of Maryland October, 2008.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Network Coding and Xors in the Air 7th Week.
Resilient Network Coding in the presence of Byzantine Adversaries Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi Sidharth.
Network Coding and Reliable Communications Group A Multi-hop Multi-source Algebraic Watchdog Muriel Médard † Joint work with MinJi Kim †, João Barros ‡
Network Coding and Reliable Communications Group Network Coding for Multi-Resolution Multicast March 17, 2010 MinJi Kim, Daniel Lucani, Xiaomeng (Shirley)
Network Coding Theory: Consolidation and Extensions Raymond Yeung Joint work with Bob Li, Ning Cai and Zhen Zhan.
Network Coding Project presentation Communication Theory 16:332:545 Amith Vikram Atin Kumar Jasvinder Singh Vinoo Ganesan.
1 NETWORK CODING Anthony Ephremides University of Maryland - A NEW PARADIGM FOR NETWORKING - February 29, 2008 University of Minnesota.
An Algebraic Watchdog for Wireless Network Coding MinJi Kim † Joint work with Muriel Médard †, João Barros ‡, Ralf Kötter * † Massachusetts Institute of.
FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen.
Deterministic Network Coding by Matrix Completion Nick Harvey David Karger Kazuo Murota.
Network Coding and Reliable Communications Group Algebraic Network Coding Approach to Deterministic Wireless Relay Networks MinJi Kim, Muriel Médard.
Page 1 Page 1 Network Coding Theory: Tutorial Presented by Avishek Nag Networks Research Lab UC Davis.
Processing Along the Way: Forwarding vs. Coding Christina Fragouli Joint work with Emina Soljanin and Daniela Tuninetti.
1 Verification Codes Michael Luby, Digital Fountain, Inc. Michael Mitzenmacher Harvard University and Digital Fountain, Inc.
Distributed zero-error network coding Tracey Ho Michelle Effros Sidharth Jaggi.
How to Turn on The Coding in MANETs Chris Ng, Minkyu Kim, Muriel Medard, Wonsik Kim, Una-May O’Reilly, Varun Aggarwal, Chang Wook Ahn, Michelle Effros.
Optimal Multicast Algorithms Sidharth Jaggi Michelle Effros Philip A. Chou Kamal Jain.
Low Complexity Algebraic Multicast Network Codes Sidharth “Sid” Jaggi Philip Chou Kamal Jain.
Network Coding: Mixin’ it up Sidharth Jaggi Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel MédardPeter Sanders Ludo Tolhuizen.
Noise, Information Theory, and Entropy
Network Alignment: Treating Networks as Wireless Interference Channel Chun Meng Univ. of California, Irvine.
Organization  Introduction to Network Coding  Practical Network Coding  Secure Network Coding  Structured File Sharing  Conclusion.
Repairable Fountain Codes Megasthenis Asteris, Alexandros G. Dimakis IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY /5/221.
Network Coding and Information Security Raymond W. Yeung The Chinese University of Hong Kong Joint work with Ning Cai, Xidian University.
Automatic Rate Adaptation Aditya Gudipati & Sachin Katti Stanford University 1.
NETWORK CODING. Routing is concerned with establishing end to end paths between sources and sinks of information. In existing networks each node in a.
Shifted Codes Sachin Agarwal Deutsch Telekom A.G., Laboratories Ernst-Reuter-Platz Berlin Germany Joint work with Andrew Hagedorn and Ari Trachtenberg.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
Threshold Phenomena and Fountain Codes Amin Shokrollahi EPFL Joint work with M. Luby, R. Karp, O. Etesami.
Resilient Network Coding in the Presence of Eavesdropping Byzantine Adversaries Michael Langberg Sidharth Jaggi Open University of Israel ISIT 2007 Tsinghua.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
CprE 545 project proposal Long.  Introduction  Random linear code  LT-code  Application  Future work.
Correction of Adversarial Errors in Networks Sidharth Jaggi Michael Langberg Tracey Ho Michelle Effros Submitted to ISIT 2005.
Erasure Coding for Real-Time Streaming Derek Leong and Tracey Ho California Institute of Technology Pasadena, California, USA ISIT
Some new(ish) results in network information theory Muriel Médard RLE EECS MIT Newton Institute Workshop January 2010.
Ahmed Osama Research Assistant. Presentation Outline Winc- Nile University- Privacy Preserving Over Network Coding 2  Introduction  Network coding 
Network Information Flow Nikhil Bhargava (2004MCS2650) Under the guidance of Prof. S.N Maheshwari (Dept. of Computer Science and Engineering) IIT, Delhi.
Computer Science Division
1 The Encoding Complexity of Network Coding Michael Langberg California Institute of Technology Joint work with Jehoshua Bruck and Alex Sprintson.
The High, the Low and the Ugly Muriel Médard. Collaborators Nadia Fawaz, Andrea Goldsmith, Minji Kim, Ivana Maric 2.
Nour KADI, Khaldoun Al AGHA 21 st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 1.
Network RS Codes for Efficient Network Adversary Localization Sidharth Jaggi Minghua Chen Hongyi Yao.
Raptor Codes Amin Shokrollahi EPFL. BEC(p 1 ) BEC(p 2 ) BEC(p 3 ) BEC(p 4 ) BEC(p 5 ) BEC(p 6 ) Communication on Multiple Unknown Channels.
Quantum Cryptography Antonio Acín
RELIABLE COMMUNICATION 1 IN THE PRESENCE OFLIMITEDADVERSARIES.
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Collision Helps! Algebraic Collision Recovery for Wireless Erasure Networks.
Network Coding Tomography for Network Failures
March 18, 2005 Network Coding in Interference Networks Brian Smith and Sriram Vishwanath University of Texas at Austin March 18 th, 2005 Conference on.
Secure Error-Correcting (SEC) Network Codes Raymond W. Yeung Institute of Network Coding & Department of Information Engineering The Chinese University.
Network Topology Single-level Diversity Coding System (DCS) An information source is encoded by a number of encoders. There are a number of decoders, each.
RS – Reed Solomon Error correcting code. Error-correcting codes are clever ways of representing data so that one can recover the original information.
RELIABLE COMMUNICATION
Network coding techniques
Distributed Network Codes
MinJi Kim, Muriel Médard, João Barros
Presentation transcript:

Fighting Byzantine Adversaries in Networks: Network Error-Correcting Codes Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi Sidharth Jaggi

Obligatory Example/History s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 b1b1 b1b1 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 (b 1,b 2 ) [ACLY00] [ACLY00] Characterization Non-constructive [LYC03], [KM02] Constructive (linear) Exp-time design [JCJ03], [SET03] Poly-time design Centralized design [HKMKE03], [JCJ03] Decentralized design EVERBETTEREVERBETTER... C=2 [This work] All the above, plus security Tons of work [SET03] Gap provably exists

Multicast Wired Wireless Simplifying assumptions All links unit capacity (1 packet/transmission) Acyclic network Network = Hypergraph ALL of Alice’s information decodable EXACTLY by EACH Bob Network Model [GDPHE04],[LME04] – No intereference

Multicast Networks Webcasting P2P networks Sensor networks

Multicast Network Model ALL of Alice’s information decodable EXACTLY by EACH Bob Upper bound for multicast capacity C, C ≤ min{C i } [ACLY00] With mixing, C = min{C i } achievable! [LCY02],[KM01],[JCJ03],[HKMKE03] Simple (linear) distributed codes suffice!

Mixing b1b1 b2b2 bmbm β1β1 β2β2 βkβk F(2 m )-linear network [KM01] Source:- Group together m bits, Every node:- Perform linear combinations over finite field F(2 m ) Generalization: The X are length n vectors over F(2 m ) X1X1 X2X2 XkXk

Problem! Eavesdropped links Attacked links Corrupted links

Setup 1.Scheme A B C 2.Network C 3.Message A C 4.Code C 5.Bad links C 6.Coin A 7.Transmit B C 8.Decode B Eurek a Eavesdropped links Z I Attacked links Z O Who knows what Stage Privacy

Result(s) First codes Optimal rates (C-2Z O,C-Z O ) Poly-time Distributed Unknown topology End-to-end Rateless Information theoretically secure Information theoretically private Wired/wireless [HLKMEK04],[JLHE05],[CY06],[CJL06],[GP06]

Error Correcting Codes Y=TX+E Generator matrix Low-weight vector Y X (Reed-Solomon Code) T E

Error Correcting Codes X T Y TZTZ Z Y=TX+E =TX+T Z Z Network transform matrices Low-weight vector Unknown

When stuck… “ε-rate secret uncorrupted channels” Useful abstraction/ building block Existing model ([GP06],[CJL06]) We improve!

Example C=3 Z O =1 n-length vectors 3n known4n unknown scalars 4n+6 unknown X 3 =X 1 +X 2 non-linear R = C - Z o secret hashes of X 4n+6 known4n known Redundancy added at source Solve for

Example C=3 Z O =1 X 3 =X 1 +X 2 6 secret hashes of X 4n+6 known4n+6 unknown Invertible with high probability Z=(0 z(2) z(3)… z(n))

Thm 1,Proof Theorem 1: Rate C-Z O -ε achievable with Z I ={E}, ε-rate secret uncorrupted channel Improves on [GP06/Avalanche] (Decentralized) and [CJL06] (optimal) R = C - Z o CxC identity matrix n>>C [HKMKE03] T packets

Thm 1,Proof Theorem 1: Rate C-Z O -ε achievable with Z I ={E}, ε-rate secret uncorrupted channel T TZTZ CxC matrix Invertible w.h.p.

Thm 2 Theorem 2: Rate C-2Z O -ε achievable with Z I ={E}

Example revisited X 3 =X 1 +X 2 n more constraints added on X Z=(0 z(2) z(3)… z(n)) DX=0DX=0 Z=(0 0 0… 0) R = C – Z o - redundancyR = C – Z o R = C – 2Z o Tight (ECC, [CY06]) nZ O

Thm 2,“Proof” Theorem 2: Rate C-2Z O -ε achievable with Z I ={E} R = C - 2Z o nZ O extra constraints D chosen uniformly at random, known to Alice, Bob and Calvin

Theorem 2: Rate C-2Z O -ε achievable with Z I ={E} Disjoint ? T’’ non-linearlinear Invertible Basis change May not be D of appropriate dimensions crucial Thm 2,“Proof”

Thm 3,Proof Theorem 3: Rate C-Z O -ε achievable, with Z I +2Z O <C Z I <C-2Z O Using algorithm 2 for small header, can transmit secret, correct information… … which can be used for algorithm 1 decoding! Algorithm 2 rate Eavesdropping rate Z I <R Information-theoretic Privacy Theorem 4, etc:

Summary RateConditions Thm 1C-Z O Secret Thm 2C-2Z O Omniscient Thm 3C-Z O Limited Optimal rates Poly-time Distributed Unknown topology End-to-end Rateless Information theoretically secure/private Wired/wireless

Backup slides

Network Coding “Justification” R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, "Network information flow," IEEE Trans. on Information Theory, vol. 46, pp , ≈ 200 papers in 3 years NetCod Workshops, DIMACS working group, ISIT sessions, tutorials, … Several patents, theses…

“The core notion of network coding is to allow and encourage mixing of data at intermediate network nodes.” (Network Coding homepage) But what IS Network Coding?

Point-to-point flows C Min-cut Max-flow (Menger’s) Theorem [M27] Ford-Fulkerson Algorithm [FF62] s t

Multicasting Webcasting P2P networks Sensor networks s1s1 t1t1 t2t2 t |T| Network s |S|

Justifications revisited - I s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 ? b1b1 b1b1 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 (b 1,b 2 ) [ACLY00] Throughput

Gap Without Coding... Coding capacity = h Routing capacity≤2 [JSCEEJT05] s

Multicasting Upper bound for multicast capacity C, C ≤ min{C i } s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!!

Multicasting b1b1 b2b2 bmbm β1β1 β2β2 βkβk F(2 m )-linear network [KM01] Source:- Group together `m’ bits, Every node:- Perform linear combinations over finite field F(2 m )

Multicasting Upper bound for multicast capacity C, C ≤ min{C i } s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!! [JCJ03],[SET03] - polynomial time code design!!!!

Thms: Deterministic Codes For m ≥ log(|T|), exists an F(2 m )-linear network which can be designed in O(|E||T|C(C+|T|)) time. [JCJ03],[SET03] Exist networks for which minimum m≈0.5(log(|T|)) [JCJ03],[LL03]

Justifications revisited - II s t1t1 t2t2 One link breaks Robustness/Distributed design

Justifications revisited - II s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 Robustness/Distributed design (b 1,b 2 ) b 1 +2b 2 (Finite field arithmetic) b 1 +b 2 b 1 +2b 2

Thm: Random Robust Codes s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Original Network C = min{C i }

Thm: Random Robust Codes s t1t1 t2t2 t |T| C |T| ' C1'C1' C2'C2' Faulty Network C' = min{C i '} If value of C' known to s, same code can achieve C' rate! (interior nodes oblivious)

Thm: Random Robust Codes m sufficiently large, rate R<C Choose random [ß] at each node Probability over [ß] that code works >1-|E||T|2 -m(C-R)+|V| [JCJ03] [HKMKE03] (different notions of linearity) Decentralized design  b1b1 b2b2 bmbm b’ 1 b’ 2 b’ m b’’ 1 b’’ 2 b’’ m  ’’  ’’ Much “sparser” linear operations (O(m) instead of O(m 2 )) [JCE06] Vs. prob of error - necessary evil?

Zero-error Decentralized Codes No a priori network topological information available - information can only be percolated down links Desired - zero-error code design One additional resource - each node v i has a unique ID number i (GPS coordinates/IP address/…) Need to use yet other types of linear codes [JHE06?]

Inter-relationships between notions of linearity C B M M Multicast G General Global Local I/O ≠ Local I/O = a Acyclic A Algebraic B Block C Convolutional Does not exist Є epsilon rate loss G a G Є A M a M a M a G? M G a G M a G G [JEHM04]

Justifications revisited - III s t1t1 t2t2 Security Evil adversary hiding in network eavesdropping, injecting false information [JLHE05],[JLHKM06?]

Multicasting Simplifying assumptions (for this talk) Single source Directed, acyclic graph. Each link has unit capacity. Links have zero delay. s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network

Kinds of linearity b1b1 b2b2 bmbm β1β1 β2β2 βkβk Algebraic codes b0b0 b1b1 b m-1 Block codes b0b0 b1b1 Convolutional codes

p (“Noise parameter”) C (Capacity) Model 1 - ResultsModel 1 - Encoding 0.5

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij j

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij i

Model 1 - Transmission … T |E| … T 1... r1r1 r |E| D 11 …D 1|E| D |E|1 …D |E||E| … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’ D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) ?

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) Consistency graph

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Consistency graph (Self-loops… not important) T r,D T Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε)

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D T Consistency graph Detection – select vertices connected to at least |E|/2 other vertices in the consistency graph. Decode using T i s on corresponding edges.

Model 1 - Proof … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D T Consistency graph D ij =T j (1)’.1+T j (2)’.r i +…+ T j (n(1- ε))’.r i n(1- ε) D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) ∑ k (T j (k)-T j (k)’).r i k =0 Polynomial in r i of degree n over F q, value of r i unknown to Zorba Probability of error < n/q<<1

Greater throughput Robust against random errors... Aha! Network Coding!!!

? ? ?

Xavier Yvonne 1 Zorba ? ? ? Yvonne |T| ? ? ?......

Setup 1.Scheme X Y Z 2.Network Z 3.Message X Z 4.Code Z 5.Bad links Z 6.Coin X 7.Transmit Y Z 8.Decode Y Eurek a Wired Wireless (packet losses, fading) Eavesdropped links Z I Attacked links Z O Who knows what Stage

Unicast 1.Code (X,Y,Z) 2.Message (X,Z) 3.Bad links (Z) 4.Coin (X) 5.Transmission (Y,Z) 6.Decode correctly (Y) Eurek a

Xavier Yvonne 1 ? Zorba ? ? Zorba sees M I links Z I, controls M O links Z O p I =M I /C, p O =M O /C Xavier and Yvonnes share no resources (private key, randomness) Zorba computationally unbounded; Xavier and Yvonnes -- “simple” computations Setup Zorba knows protocols and already knows almost all of Xavier’s message (except Xavier’s private coin tosses) Goal: Transmit at “high” rate and w.h.p. decode correctly Zorba (hidden) knows network; Xavier and Yvonnes don’t C MOMO Yvonne |T| ? ? ? Distributed design (interior nodes oblivious/overlay to network coding)

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel p (“Noise parameter”) C (Capacity) 01 H(p) 0.5

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel  Binary Erasure Channel p (“Noise parameter”) C (Capacity) 0E 1-p 0.5

Background Adversarial channel models  “Limited-flip” adversary, p I =1 (Hamming,Gilbert-Varshanov,McEliece et al…) Large alphabets (F q instead of F 2 )  Shared randomness, cryptographic assumptions… p O (“Noise parameter”) C (Capacity)

p O (“Noise parameter”) C (Capacity) Upper bounds p O

p O (“Noise parameter”) C (Capacity) Upper bounds 0.5 ? ? ? 0

p I =p O (“Noise parameter” = “Knowledge parameter”) C (Capacity) Unicast – Results [JLHE05] 0.5

p O (“Noise parameter”) C (Capacity) Full knowledge [Folklore] 0.5 ( “Knowledge parameter” p I =1)

Ignorant Zorba 1.Code (X,Y,Z) 2.Message X p,X s (X) 3.Bad links (Z) 4.Coin (X) 5.Transmission (Y,Z) 6.Decode correctly (Y,Z) I(Z;X s )=0 Eurek a

p = |Z|/h C (Normalized by h) General Multicast Networks 0.5 h Z S R1R1 R |T| Slightly more intricate proof

|E|-|Z| |E| |E|-|Z| Unicast - Encoding

|E|-|Z| |E| MDS Code X |E|-|Z| Block-length n over finite field F q |E|-|Z| n(1-ε) x1x1 … n Vandermonde matrix T |E| |E| n(1-ε) T1T1... n Rate fudge-factor “Easy to use consistency information” nεnε Symbol from F q Unicast - Encoding

… T |E| … T 1... r r nεnε D 1 …D |E| D i =T i (1).1+T i (2).r+…+ T i (n(1- ε)).r n(1- ε) TiTi rDiDi i Unicast - Encoding

… T |E| … T 1... r r D 1 …D |E| … T |E| ’ … T 1 ’... r’ D 1 ’…D |E| ’ Unicast - Transmission

D i =T i (1)’.1+T i (2)’.r+…+ T i (n(1- ε))’.r n(1- ε) ? If so, accept T i, else reject T i Unicast - Quick Decoding … T |E| ’ … T 1 ’... r r’ D 1 …D |E| D 1 ’…D |E| ’ Choose majority (r,D 1,…,D |E| ) ∑ k (T i (k)-T i (k)’).r k =0 Polynomial in r of degree n over F q, value of r unknown to Zorba Probability of error < n/q<<1 Use accepted T i s to decode

? ? ? General Multicast Networks

t1t1 t |T| S Multicast Networks [HKMKE03] y s (j)=Tx s (j) x y1y1 β1β1 βiβi βhβh y |T| x b (i) x s (j) x b (1) x b (h) Rate h=C-M O Block Slice hxh identity matrix x ’ b (i) h<<n T x s (j)=T -1 y s (j)

pOpO C (Normalized by h) 0.5 Multicast Networks R1R1 R |T| S S’ |Z| S’ 2 S’ 1 Observation 1: Can treat adversaries as new sources

Multicast Networks y’ s (j)=Tx s (j)+T’x’ s (j) SS Supersource Observation 2: w.h.p. over network code design, {Tx S (j)} and {T’x’ S (j)} do not intersect (robust codes…). Corrupted Unknown

Multicast Networks y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} { T’x’ s (j)} { Tx s (j)} x s (3)+2x s (9)-5 x s (1)=0 y s (3)+2y s (9)-5y s (1)= another vector in {T’x’ s (j)}

Multicast Networks y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy { T’x’ s (j)} { Tx s (j)} Repeat M O times Discover {T’x’ s (j)} “Zero out” {T’x’ s (j)} when you have eliminated the impossible, whatever remains, however improbable, must be the truth Estimate T (redundant x s (j) known) Linear algebra Decode

Multicast Networks y’ s (j)=Tx s (j)+T’x’ s (j) x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} x’ s (2)+x’ s (5)-x’ s (3)=0 y s (2)+y s (5)-y s (3)= 0

Scheme 1(a) “ε-rate secret uncorrupted channels” Useful abstraction

Scheme 1(b) “sub-header based scheme” Works … kind of… … for “many” networks

Scheme 2 “distributed network error-correcting code” ( Knowledge parameter p I =1) [CY06] – bounds, high complexity construction [JHLMK06?] – tight, poly-time construction p O (“Noise parameter”) C (Capacity) 0.5

Scheme 2 “distributed network error-correcting code” pOpO pOpO y’ s (j)=Tx s (j)+T’x’ s (j) error vector 1-2p O

Scheme 2 “distributed network error-correcting code” y’ s (j)=Tx s (j)+T’x’ s (j)

Scheme 2 “distributed network error-correcting code” y’ s (j)=T’’x s (j)+T’x’ s (j) e e e’

Scheme 2 “distributed network error-correcting code” y’ s (j)=T’’x s (j)+T’x’ s (j) e e e’ Linear algebra

Scheme 3 “non-omniscient adversary” y’ s (j)=T’’x s (j)+T’x’ s (j) M I +2M O <C M I <C-2M O Scheme 2 rate Zorba’s observations Using Scheme 2 as small header, can transmit secret, correct information… … which can be used for Scheme 1(a) decoding!

Variations - Feedback C p 0 1 1

Variations – Know thy enemy C p C p 0 1 1

Variations – Omniscient but not Omnipresent C p Achievability: Gilbert-Varshamov, Algebraic Geometry Codes Converse: Generalized MRRW bound

Variations – Random Noise C p 0 CNCN 1 SEPARATIONSEPARATION

p (“Noise parameter”) C (Capacity) Ignorant Zorba - Results X p +X s XsXs 1-2p

p (“Noise parameter”) C (Capacity) Ignorant Zorba - Results X p +X s XsXs 1-2p a+b+c a+2b+4c a+3b+9c MDS code