Biot-Savart Law The Field Produced by a Straight Wire.

Slides:



Advertisements
Similar presentations
Chapter 30. Induction and Inductance
Advertisements

Electromagnetic Induction Inductors. Problem A metal rod of length L and mass m is free to slide, without friction, on two parallel metal tracks. The.
Chapter 10 Time-Varying Fields and Maxwell’s Equations Two New Concepts: The electric field produced by a changing magnetic field (Faraday) The magnetic.
Topic 12.1 Induced electromotive force (emf) 3 hours.
Magnetic Flux Let us consider a loop of current I shown in Figure(a). The flux  1 that passes through the area S 1 bounded by the loop is Suppose we pass.
Electricity and Magnetism Electromagnetic Induction Mr D. Patterson.
Magnetic Fields Faraday’s Law
Induced EMF and Inductance 1830s Michael Faraday Joseph Henry M is mutual inductance.
Walker, Chapter 23 Magnetic Flux and Faraday’s Law of Induction
Induced EMF and Inductance 1830s Michael Faraday Joseph Henry.
Phy 213: General Physics III Chapter 30: Induction & Inductance Lecture Notes.
In the circuit below, suppose the switch has been in position A for a very long time. If it is then switched to B at t=0, find the current as a function.
Current carrying wires 1820 Hans Christian Oersted Hans Christian Ørsted.
Physics 1502: Lecture 18 Today’s Agenda Announcements: –Midterm 1 distributed available Homework 05 due FridayHomework 05 due Friday Magnetism.
Waves can be represented by simple harmonic motion.
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
Biot-Savart Law The Field Produced by a Straight Wire.
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Physics 121 Practice Problem Solutions 11 Faraday’s Law of Induction
Chapter 29 Electromagnetic Induction and Faraday’s Law HW#9: Chapter 28: Pb.18, Pb. 31, Pb.40 Chapter 29:Pb.3, Pb 30, Pb. 48 Due Wednesday 22.
INDUCTANCE Plan:  Inductance  Calculating the Inductance  Inductors with Magnetic materials.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
CHAPTER 20, SECTION 1 ELECTRICITY FROM MAGNETISM.
Unit 5: Day 8 – Mutual & Self Inductance
AP Physics C Montwood High School R. Casao
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Sources of the Magnetic Field
Nov PHYS , Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #20, Review Part 2 Tues. November Dr. Andrew Brandt HW28 solution.
Electrodynamics Electromagnetic Induction Maxwell’s Equations
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
B due to a moving point charge where  0 = 4  x10 -7 T.m/A Biot-Savart law: B due to a current element B on the axis of a current loop B inside a solenoid.
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Lecture 14 Magnetic Domains Induced EMF Faraday’s Law Induction Motional EMF.
MAGNETIC INDUCTION MAGNETUIC FLUX: FARADAY’S LAW, INDUCED EMF:
Magnetic Induction - magnetic flux - induced emf
AP Physics Chapter 21 Electromagnetic Induction, Faraday’s Law, and AC Circuits An electric current produces a magnetic field and a magnetic field exerts.
Review 1.
Magnetism and its applications.
Faraday’s Law and Inductance. Faraday’s Law A moving magnet can exert a force on a stationary charge. Faraday’s Law of Induction Induced emf is directly.
Induced Voltages and Inductance
Electro- magnetic Induction Lecture 3 AP Physics.
Topic: Electromagnetic induction Objectives: 1.Calculate the magnetic flux through a coil. 2.Calculate the induced electromotive force (EMF) in the coil.
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
29. Electromagnetic Induction
Chapter 28 Inductance; Magnetic Energy Storage. Self inductance 2 Magnetic flux Φ B ∝ current I Electric currentmagnetic fieldEMF (changing) Phenomenon.
Faraday’s Law of Induction.  = -N  B /  t –  : induced potential (V) – N: # loops –  B : magnetic flux (Webers, Wb) – t: time (s)
Magnetism Alternating-Current Circuits
Ch 21 1 Chapter 21 Electromagnetic Induction Faraday’s Law AC Circuits © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Magnetism #2 Induced EMF Ch.20. Faraday’s Law of Induction We now know that a current carrying wire will produce its own magnetic field with the lines.
Magnetic Fields. Magnetic Fields and Forces a single magnetic pole has never been isolated magnetic poles are always found in pairs Earth itself is a.
Physics 1202: Lecture 12 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
CH Review Changing the magnetic flux in a coil induces an emf around the coil. (As long as the coil is connected in a complete circuit, a current.
1 15. Magnetic field Historical observations indicated that certain materials attract small pieces of iron. In 1820 H. Oersted discovered that a compass.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
Topic: Electromagnetic induction
 Electromagnetic Induction – The production of an emf (the energy per unit charge supplied by a source of electric current) in a conducting circuit by.
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Problem 4 A metal wire of mass m can slide without friction on two parallel, horizontal, conducting rails. The rails are connected by a generator which.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Electromagnetic Induction.  = BA  = BA cos  Magnetic flux: is defined as the product of the magnetic field B and the area A of the.
Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it.
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Presentation transcript:

Biot-Savart Law

The Field Produced by a Straight Wire

Field of a Current Carrying Loop R r x (along x)

Ampere’s Law The field produced by an infinite wire

Problem 4 Consider a very long (essentially infinite), tightly wound coil with n turns per unit length. This is called a solenoid. Assume that the lines of B are parallel to the axis of the solenoid and non-zero only inside the coil and very far away. Also assume that B is constant inside. Find B inside the solenoid if there is a current i flowing through it.

Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it. What is the force exerted on the loop by the long wire?

An infinitely long, hollow cylindrical wire has inner radius a and outer radius b. A current i is uniformly distributed over its cross-section. Find the magnetic field everywhere. Chapter 10 Quiz

Induced EMF and Inductance 1830s Michael Faraday Joseph Henry

Faraday’s Law of Induction The induced EMF in a closed loop equals the negative of the time rate of change of magnetic flux through the loop

There can be EMF produced in a number of ways: A time varying magnetic field An area whose size is varying A time varying angle between and Any combination of the above

R From Faraday’s law: a time varying flux through a circuit will induce an EMF in the circuit. If the circuit consists only of a loop of wire with one resistor, with resistance R, a current Which way? Lenz’s Law: if a current is induced by some change, the direction of the current is such that it opposes the change.

The Moving Circuit

A Simple Generator