Wind Signatures in the X-ray Emission Line Profiles of the O Supergiant  Orionis Kevin Grizzard 1, David Cohen 2, Maurice Leutenegger 3, Casey Reed 2,

Slides:



Advertisements
Similar presentations
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
Advertisements

PHYS 206 Matter and Light At least 95% of the celestial information we receive is in the form of light. Therefore we need to know what light is and where.
X-ray Emission from Massive Stars: Using Emission Line Profiles to Constrain Wind Kinematics, Geometry, and Opacity David Cohen Dept. of Physics and Astronomy.
X-ray Emission and Absorption in Massive Star Winds Constraints on shock heating and wind mass-loss rates David Cohen Swarthmore College.
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
Line Shapes in Hot Stars: Hydrodynamics & Wind Mass-Loss Rates David Cohen Swarthmore College with Maurice Leutenegger, Stan Owocki, Rich Townsend, Emma.
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
X-rays from Young Massive Stars David Cohen Swarthmore College.
A pair of O stars with hard X-rays in M17 Marc Gagné & David Cohen Chandra optical.
X-ray Emission from Massive Stars Using Emission Line Profiles to Constrain Wind Kinematics, Geometry, and Opacity David Cohen Department of Physics and.
Chandra Emission Line Diagnostics of  Sco Carolin N Cardamone Advisor: David Cohen.
X-ray Emission Line Profiles of Hot Stars David H. Cohen and Stanley P. Owocki Presented at “Two Years of Chandra Science” Washington, D.C., September.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Cumulative  Deviation of data & model scaled  to 0.3  99%  90%  95% HD 36861J (rp200200a01) Probability of Variability A Large ROSAT Survey.
The Application of Forbidden Line X-Ray Diagnostics to the Hot Star Tau Sco Author: Geneviève de Messières Swarthmore College ‘04 Advised by: David Cohen.
X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore College with Stephen St. Vincent (’07), Kevin Grizzard (St.
Introductory X-ray Group Meeting Spectroscopy and X-rays 23 January 2001 Members of the group: David Cohen Prue Schran Allison Adelman David Conners Eric.
X-rays from Magnetically Channeled Winds of OB Stars David Cohen Swarthmore College with M. Gagné, S. St. Vincent, A. ud-Doula, S. Owocki, R. Townsend.
Figure 6: Contour plot of light curve for fixed inclination of 54 o and the full range of azimuthal viewing angles starting again at 180 o from apastron.
Stephen St. Vincent (Swarthmore, class of 2007) Advisor: Prof. David Cohen Visualizing Numerical Simulations of Magnetized Stellar Winds, and the Synthesis.
The spectral resolution of x-ray telescopes has improved many hundred-fold over the past decade, enabling us to detect and resolve emission lines in hot.
Chandra Emission Line Diagnostics of  Sco Geneviève de Messières (Swarthmore College ‘04), Carolin Cardamone ( Wellesley College ‘02), David H. Cohen.
X-ray Emission from O Stars David Cohen Swarthmore College.
Astrophysics Research Projects: massive star winds, x-ray emission, theoretical models, spectroscopy, laboratory plasma astrophysics David Cohen on leave.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Analysis of Doppler-Broadened X-ray Emission Line Profiles from Hot Stars David Cohen - Swarthmore College with Roban Kramer - Swarthmore College Stanley.
X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore College with Roban Kramer (‘03) and Stephanie Tonnesen (‘03)
Agreement between X-ray data and magnetically channeled wind shock model of  1 Ori C David Cohen, Marc Gagné for Massive Star research group.
X-ray Spectroscopy of the Radiation-Driven Winds of Massive Stars: Line Profile and Line Ratio Diagnostics David Cohen Swarthmore College.
X-ray Spectroscopy of Laboratory and Astrophysical Plasmas David Cohen Department of Physics and Astronomy Swarthmore College
X-ray Emission Line Profile Diagnostics of Hot Star Winds: Constraints on Kinematics, Geometry, and Opacity David H. Cohen Dept. of Physics and Astronomy.
Stephen St.Vincent (Swarthmore, class of 2007) Advisor: Prof. David Cohen Visualizing Numerical Simulations of Magnetized Stellar Winds and the Synthesis.
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
X-ray Emission from Massive Stars Using Emission Line Profiles to Constrain Wind Kinematics, Geometry, and Opacity David Cohen Department of Physics and.
X-ray Emission from O Stars David Cohen Swarthmore College.
X-ray Emission from Massive Stars David Cohen Swarthmore College.
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Resonance scattering in the X-ray emission line profiles of  Pup Maurice Leutenegger With David Cohen, Steve Kahn, Stan Owocki, and Frits Paerels.
David Henley, University of BirminghamX-ray & Radio Connections, Santa Fe, February 2004 Probing Colliding Wind Binaries with High-Resolution X-ray Spectra.
X-ray Spectral Diagnostics of Activity in O and Early-B Stars wind shocks and mass-loss rates David Cohen Swarthmore College.
Chapter 3 Light and Matter
Evidence for a Magnetically driven wind from the Black Hole Transient GRO John Raymond, Jon Miller, A. Fabian, D. Steeghs, J. Homan, C. Reynolds,
Energy Energy is a property that enables something to do work
High-Resolution X-ray Spectroscopy of the Accreting Weak-Line T Tauri Star DoAr 21 Victoria Swisher, Eric L. N. Jensen, David H. Cohen (Swarthmore College),
X-ray Emission from Massive Stars David Cohen Dept. of Physics & Astronomy Swarthmore College.
The Interstellar Medium
Physical properties. Review Question What are the three ways we have of determining a stars temperature?
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
Post Processing of ZEUS MHD Simulations of Young, Hot Stars Stephen V. St.Vincent and David H. Cohen Swarthmore College Department of Physics & Astronomy.
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
The cooling-flow problem
Starlight and Atoms Chapter 6. The Amazing Power of Starlight Just by analyzing the light received from a star, astronomers can retrieve information about.
Chandra X-Ray Spectroscopy of DoAr 21: The Youngest PMS Star with a High-Resolution Grating Spectrum The High Energy Grating Spectrum of DoAr 21, binned.
Student-Faculty Astronomy Research at Swarthmore: Or…doing astronomy research when the Sun is up Professor David Cohen with Victoria Swisher ( ‘ 06), Micah.
Discordant Estimates of Mass-Loss Rates for O-Type Stars Alex Fullerton STScI /HIA Derck Massa (STScI/SGT) & Raman Prinja (UCL)
Conclusions The prototype  Pup (O4 I) has X-ray emission line profiles consistent with a simple spherically symmetric wind shock model. What can lead.
Simulation of CHANDRA X-Ray Spectral Observations of  Pup (O4 If) J. J. MacFarlane, P. Wang Prism Computational Sciences Madison, WI J. P. Cassinelli,
X-ray Line Profile Diagnostics of Shock Heated Stellar Winds Roban H. Kramer 1,2, Stephanie K. Tonnesen 1, David H. Cohen 1,2, Stanley P. Owocki 3, Asif.
Introductory Summer Research Group Meeting Spectroscopy and X-rays 28 May 2001 Members of the group: David Cohen Allison Adelman David Conners Carie Cardamone.
Resolved X-ray Line Profiles from O Stars as a Diagnostic of Wind Mass Loss David Cohen Department of Physics & Astronomy Swarthmore College Jon Sundqvist.
The Young Magnetic O Star  1 Ori C: Multi-phase Chandra High-Resolution Grating Spectra Mary Oksala, Marc Gagné (West Chester University), David Cohen,
X-ray Emission from Massive Stars David Cohen Dept. of Physics & Astronomy Swarthmore College.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
The Solar System Lesson2 Q & A
Prepare your scantron: Setup:
Stars and Galaxies Lesson2 Q & A
The ISM and Stellar Birth
David Cohen Department of Physics & Astronomy Swarthmore College
Astrophysics Research Projects
Presentation transcript:

Wind Signatures in the X-ray Emission Line Profiles of the O Supergiant  Orionis Kevin Grizzard 1, David Cohen 2, Maurice Leutenegger 3, Casey Reed 2, Roban Kramer 2,3,4, Stan Owocki 5 1 St. John’s College, 2 Swarthmore College, 3 Columbia University, 4 Prism Computational Sciences, 5 University of Delaware astro.swarthmore.edu/~cohen/presentations/zori_AAS2006/ Presented at the AAS meeting, Washington DC, January 2006 X-ray emission from OB stars General problem – hot stars don’t have convective envelopes and thus no dynamo and no corona. Is the observed x-ray emission evidence of a different type of magnetic activity? Or is it related to these hot stars’ strong winds? The massive, radiation-driven winds of OB stars are inherently unstable Phenomenology of Chandra grating observations  Pup (O4 If) and  Ori (O9.7 Ib) Owocki & Cohen (2001) developed a simple, phenomenological model of x-ray line profiles from hot plasma embedded in an expanding emitting and absorbing medium Chandra data for  Ori Fits to individual lines in the Chandra spectrum of  Ori These spectra are soft (T ~ few million K) and show strong emission lines of He-like and H-like O, Ne, Mg, Si, S as well as L-shell lines of Fe, with a weak bremsstrahlung continuum. The phenomenology is like that of cool stars’ coronae…except that the lines are broad. As in the Chandra spectrum of  Pup, the lines are broad (typical FWHM ~ 1500 km/s), but what are the profile shapes telling us?  Pup: lines are resolved. Capella: lines are unresolved. As with UV spectra of OB stars (Si IV lines of  Ori seen with Copernicus, left; from Snow & Morton, 1976), are the resolved line profiles telling us something about wind kinematics? Simulations (below) show that this instability leads to shock-heating, and x-ray emission. In the schematic on the left, hue represents Doppler shift of the emitted x-rays; intensity is proportional to the density-squared emission strength. (The observer is assumed to be on the left.) Continuum absorption by the unshocked wind preferentially attenuates photons from the back, red shifted, portion of the wind, leading to the characteristic broadened, skewed profile shown on the right, with a blue shifted centroid. The key model parameters are:  * : characterizes the amount of attenuation R min : radius above which the wind is hot enough to emit x- rays q : power-law index of assumed radial fall-off of the hot plasma filling factor (q=0 implies a constant filling factor). First, we fit a Gaussian line profile, with its centroid fixed at the lab rest wavelength: rejected at the 94% conf. level. Fe XVII line at Å Next, we fit a Gaussian, but with the centroid a free parameter. Fit is now marginal (rejected at the 74% conf. level). Finally, we fit a wind-profile model. The fit is good (29% rejection prob.) – R min =1.4,  * =0.6, q=-0.5. Confidence limits on model parameters 68% and 90% contours in 2-D slices of the 3-D model parameter space. u max = R * /R min. Fits to 2 other lines – O VIII Ly and Ne X Ly. Summary of fits to seven line complexes Global parameters are consistent with standard instability shock paradigm (see color figures at bottom of left-hand column): R min ~ 1.5 R *, q ~ 0. But,  * values are roughly an order of magnitude too small: more evidence for mass-loss rate overestimates (see Bouret, Lanz, & Hillier; also FUSE evidence for lower mass-loss rates in Fullerton, Massa, & Prinja)? Effects of wind inhomogeneities (see Oskinova, Feldmeier, & Hamann)? This line-profile model is not tied to any specific wind-shock or coronal model. It can be used to find the physical properties of the x-ray emitting plasma on a hot star. These values can then be related to the predictions of a specific model. Velocity map from rad-hydro simulation of self- excited instability (left) and snapshot of temperature and density from same simulation (center). Simulation on right is of the instability seeded by turbulence at the base of the wind. Suite of models above: R min increases from top to bottom.  * increases in each frame, from black to red to blue.