CSC401 – Analysis of Algorithms Lecture Notes 1 Introduction

Slides:



Advertisements
Similar presentations
Analysis of Algorithms
Advertisements

Estimating Running Time Algorithm arrayMax executes 3n  1 primitive operations in the worst case Define a Time taken by the fastest primitive operation.
Analysis of Algorithms1 Running Time Pseudo-Code Analysis of Algorithms Asymptotic Notation Asymptotic Analysis Mathematical facts COMP-2001 L4&5 Portions.
© 2004 Goodrich, Tamassia 1 Lecture 01 Algorithm Analysis Topics Basic concepts Theoretical Analysis Concept of big-oh Choose lower order algorithms Relatives.
Analysis of Algorithms Algorithm Input Output. Analysis of Algorithms2 Outline and Reading Running time (§1.1) Pseudo-code (§1.1) Counting primitive operations.
Analysis of Algorithms1 CS5302 Data Structures and Algorithms Lecturer: Lusheng Wang Office: Y6416 Phone:
Analysis of Algorithms (Chapter 4)
Analysis of Algorithms1 Estimate the running time Estimate the memory space required. Time and space depend on the input size.
Analysis of Algorithms
Analysis of Algorithms (pt 2) (Chapter 4) COMP53 Oct 3, 2007.
Fall 2006CSC311: Data Structures1 Chapter 4 Analysis Tools Objectives –Experiment analysis of algorithms and limitations –Theoretical Analysis of algorithms.
Introduction to Analysis of Algorithms Prof. Thomas Costello (reorganized by Prof. Karen Daniels)
The Seven Functions. Analysis of Algorithms. Simple Justification Techniques. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer Goodrich,
Analysis of Algorithms1 CS5302 Data Structures and Algorithms Lecturer: Lusheng Wang Office: Y6416 Phone:
PSU CS 311 – Algorithm Design and Analysis Dr. Mohamed Tounsi 1 CS 311 Design and Algorithms Analysis Dr. Mohamed Tounsi
Analysis of Performance
CS2210 Data Structures and Algorithms Lecture 2:
Analysis of Algorithms Algorithm Input Output © 2014 Goodrich, Tamassia, Goldwasser1Analysis of Algorithms Presentation for use with the textbook Data.
Analysis of Algorithms Lecture 2
Analysis of Algorithms
CSCE 3110 Data Structures & Algorithm Analysis Algorithm Analysis I Reading: Weiss, chap.2.
Analysis Tools Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Algorithm Efficiency CS 110: Data Structures and Algorithms First Semester,
Analysis of Algorithms
Analysis of Algorithms1 The Goal of the Course Design “good” data structures and algorithms Data structure is a systematic way of organizing and accessing.
Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of time. Chapter 4. Algorithm Analysis (complexity)
Data Structures Lecture 8 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Computer Science 212 Title: Data Structures and Algorithms
Analysis of Algorithms1 Running Time Pseudo-Code Analysis of Algorithms Asymptotic Notation Asymptotic Analysis Mathematical facts.
Analysis of Algorithms Algorithm Input Output Last Update: Aug 21, 2014 EECS2011: Analysis of Algorithms1.
1 Dr. J. Michael Moore Data Structures and Algorithms CSCE 221 Adapted from slides provided with the textbook, Nancy Amato, and Scott Schaefer.
Dr. Alagoz CHAPTER 2 Analysis of Algorithms Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of.
CSC401 – Analysis of Algorithms Chapter 1 Algorithm Analysis Objectives: Introduce algorithm and algorithm analysis Discuss algorithm analysis methodologies.
Analysis of Algorithms Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
Analysis of Algorithms Algorithm Input Output © 2010 Goodrich, Tamassia1Analysis of Algorithms.
Analysis of algorithms. What are we going to learn? Need to say that some algorithms are “better” than others Criteria for evaluation Structure of programs.
CSC Devon M. Simmonds University of North Carolina, Wilmington CSC231 Data Structures.
Announcement We will have a 10 minutes Quiz on Feb. 4 at the end of the lecture. The quiz is about Big O notation. The weight of this quiz is 3% (please.
GC 211:Data Structures Week 2: Algorithm Analysis Tools Slides are borrowed from Mr. Mohammad Alqahtani.
1 COMP9024: Data Structures and Algorithms Week Two: Analysis of Algorithms Hui Wu Session 2, 2014
Analysis of Algorithms Algorithm Input Output © 2014 Goodrich, Tamassia, Goldwasser1Analysis of Algorithms Presentation for use with the textbook Data.
Data Structures I (CPCS-204) Week # 2: Algorithm Analysis tools Dr. Omar Batarfi Dr. Yahya Dahab Dr. Imtiaz Khan.
(Complexity) Analysis of Algorithms Algorithm Input Output 1Analysis of Algorithms.
Analysis of Algorithms
Analysis of Algorithms
Definition of Computer Science
COMP9024: Data Structures and Algorithms
COMP9024: Data Structures and Algorithms
GC 211:Data Structures Week 2: Algorithm Analysis Tools
GC 211:Data Structures Algorithm Analysis Tools
03 Algorithm Analysis Hongfei Yan Mar. 9, 2016.
Analysis of Algorithms
COMP9024: Data Structures and Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
GC 211:Data Structures Algorithm Analysis Tools
Analysis of Algorithms
At the end of this session, learner will be able to:
CS210- Lecture 2 Jun 2, 2005 Announcements Questions
Analysis of Algorithms
Analysis of Algorithms
Presentation transcript:

CSC401 – Analysis of Algorithms Lecture Notes 1 Introduction Objectives: Introduce algorithm and algorithm analysis Discuss algorithm analysis methodologies Introduce pseudo code of algorithms Asymptotic notion of algorithm efficiency

What is algorithm analysis ? What is an algorithm ? An algorithm is a step-by-step procedure for solving a problem in a finite amount of time. Input Algorithm Output What is algorithm analysis ? Two aspects: Running time – How much time is taken to complete the algorithm execution? Storage requirement – How much memory is required to execute the program?

Running Time Most algorithms transform input objects into output objects. The running time of an algorithm typically grows with the input size. Average case time is often difficult to determine. We focus on the worst case running time. Easier to analyze Crucial to applications such as games, finance and robotics

How Is An Algorithm Analyzed? Two methodologies Experimental analysis Method Write a program implementing the algorithm Run the program with inputs of varying size and composition Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time Plot the results Limitations It is necessary to implement the algorithm, which may be difficult Results may not be indicative of the running time on other inputs not included in the experiment. In order to compare two algorithms, the same hardware and software environments must be used

How Is An Algorithm Analyzed? Theoretical Analysis Method Uses a high-level description of the algorithm instead of an implementation Characterizes running time as a function of the input size, n. Takes into account all possible inputs Allows us to evaluate the speed of an algorithm independent of the hardware/software environment Characteristics A description language -- Pseudo code Mathematics

Pseudocode High-level description of an algorithm More structured than English prose Less detailed than a program Preferred notation for describing algorithms Hides program design issues Algorithm arrayMax(A, n) Input array A of n integers Output maximum element of A currentMax  A[0] for i  1 to n  1 do if A[i]  currentMax then currentMax  A[i] return currentMax Example: find max element of an array

Pseudocode Details Control flow Method call Return value Expressions if … then … [else …] switch … while … do … repeat … until … for … do … Indentation replaces braces Method declaration Algorithm method (arg [, arg…]) Input … Output … Array indexing: A[i] Method call var.method (arg [, arg…]) Return value return expression Expressions Assignment (like  in Java) Equality testing (like  in Java) n2 Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model A CPU An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character 1 2 Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations Basic computations performed by an algorithm Identifiable in pseudocode Largely independent from the programming language Exact definition not important (we will see why later) Assumed to take a constant amount of time in the RAM model Examples: Evaluating an expression Assigning a value to a variable Performing an arithmetic operation Comparing two numbers Indexing into an array Following an object reference Calling a method Returning from a method

Counting Primitive Operations By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size Algorithm arrayMax(A, n) currentMax  A[0] 2 # operations for i  1 to n  1 do 1 + n if A[i]  currentMax then 2(n  1) currentMax  A[i] 2(n  1) { increment counter i } 2(n  1) return currentMax 1 Total 7n  2

Estimating Running Time Algorithm arrayMax executes 7n  2 primitive operations in the worst case. Define: a = Time taken by the fastest primitive operation b = Time taken by the slowest primitive operation Let T(n) be the worst-case time of arrayMax. Then a (7n  1)  T(n)  b(7n  1) Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time Changing the hardware/ software environment Affects T(n) by a constant factor, but Does not alter the growth rate of T(n) The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax Growth rates of functions: Linear  n Quadratic  n2 Cubic  n3 In a log-log chart, the slope of the line corresponds to the growth rate of the function

Constant Factors The growth rate is not affected by Examples constant factors or lower-order terms Examples 102n + 105 is a linear function 105n2 + 108n is a quadratic function

Big-Oh Notation f(n)  cg(n) for n  n0 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n0 such that f(n)  cg(n) for n  n0 Example: 2n + 10 is O(n) 2n + 10  cn (c  2) n  10 n  10/(c  2) Pick c = 3 and n0 = 10 Example: the function n2 is not O(n) n2  cn n  c The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples 3 log n + log log n 7n-2 3n3 + 20n2 + 5 7n-2 is O(n) need c > 0 and n0  1 such that 7n-2  c•n for n  n0 this is true for c = 7 and n0 = 1 3n3 + 20n2 + 5 3n3 + 20n2 + 5 is O(n3) need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0 this is true for c = 4 and n0 = 21 3 log n + log log n 3 log n + log log n is O(log n) need c > 0 and n0  1 such that 3 log n + log log n  c•log n for n  n0 this is true for c = 4 and n0 = 2

Big-Oh and Growth Rate The big-Oh notation gives an upper bound on the growth rate of a function The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no more than the growth rate of g(n) We can use the big-Oh notation to rank functions according to their growth rate f(n) is O(g(n)) g(n) is O(f(n)) g(n) grows more Yes No f(n) grows more Same growth

Big-Oh Rules If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e., Drop lower-order terms Drop constant factors Use the smallest possible class of functions Say “2n is O(n)” instead of “2n is O(n2)” Use the simplest expression of the class Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Asymptotic Algorithm Analysis The asymptotic analysis of an algorithm determines the running time in big-Oh notation To perform the asymptotic analysis We find the worst-case number of primitive operations executed as a function of the input size We express this function with big-Oh notation Example: We determine that algorithm arrayMax executes at most 7n  2 primitive operations We say that algorithm arrayMax “runs in O(n) time” Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations