Transport Layer 3-1 08 - Transport Layer. Reliable data transfer: getting started send side receive side rdt_send(): called from above, (e.g., by app.).

Slides:



Advertisements
Similar presentations
CS 4284 Systems Capstone Networking Godmar Back.
Advertisements

Transport Layer 3-1 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP.
EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Transport Layer3-1 Data Communication and Networks Lecture 6 Reliable Data Transfer October 12, 2006.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 9.
Transport Layer3-1 Reliable Data Transfer. Transport Layer3-2 Principles of Reliable data transfer r important in app., transport, link layers r top-10.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
3-1 Sect. 3.4 Principles of reliable data transfer Computer Networking: A Top Down Approach Featuring the Internet, 1 st edition. Jim Kurose, Keith Ross.
CPSC 441: Reliable Transport1 Reliable Data Transfer Instructor: Carey Williamson Office: ICT Class.
1 Internet transport-layer protocols r reliable, in-order delivery (TCP) m congestion control m flow control m connection setup r unreliable, unordered.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture r Transport-layer services r Multiplexing and demultiplexing r Connectionless.
Announcement Homework 1 due last night, how is that ? –Will discuss some problems in the lecture next week Should have completed at least part II of project.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Reliable Data Transfer#1#1 Reliable Data Transfer.
1 Transport Layer goals: r understand principles behind transport layer services: m multiplexing/demultiplexing m reliable data transfer m flow control.
1 Reliable Data Transfer. 2 r Problem: Reliability  Want an abstraction of a reliable link even though packets can be corrupted or get lost r Solution:
Reliable Data Transfer#1#1 Reliable Data Transfer.
Previous Lecture r P2P file sharing r Socket programming with TCP r Socket programming with UDP.
The Transport Layer  introduction  fundamental problems in networking  communicating reliably over an unreliable channel  congestion and flow control.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 
CSCI 3335: C OMPUTER N ETWORKS C HAPTER 3 T RANSPORT L AYER Vamsi Paruchuri University of Central Arkansas Some.
Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_1.
3: Transport Layer 3a-1 8: Principles of Reliable Data Transfer Last Modified: 10/15/2015 7:04:07 PM Slides adapted from: J.F Kurose and K.W. Ross,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
14-1 Last time □ Mobility in Cellular networks ♦ HLR, VLR, MSC ♦ Handoff □ Transport Layer ♦ Introduction ♦ Multiplexing / demultiplexing ♦ UDP.
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m sockets m reliable data transfer m.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
1 of 44 Week 2 Lecture 2 – Network Layers Transport Layer – Example: TCP/UDP.
CS 3830 Day 15 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due (in 1DropBox) on Wednesday, Oct 10 r Prog4: m Parts A and B m Work.
Transport Layer 3-1 From Computer Networking: A Top Down Approach Featuring the Internet by Jim Kurose, Keith Ross Addison-Wesley, A note on the use of.
Transport Layer Goals: Overview:
Part 3: Transport Layer: Reliable Data Transfer CSE 3461/5461 Reading: Section 3.4, Kurose and Ross 1.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer 3-1 Chapter 3 outline 3.4 Principles of reliable data transfer.
September 24 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
1 John Magee 10 February 2014 CS 280: Transport Layer: Reliable Data Transfer Most slides adapted from Kurose and Ross, Computer Networking 6/e Source.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Reliable Data Transfer#1#1 Reliable Data Transfer.
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m Multiplexing/demultip lexing m reliable.
Transport Layer Our goals:
Tutorial 2 Solution. Q1. Consider a channel that can lose packets but has a maximum delay that is known. Modify protocol rdt2.1 to include sender timeout.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 11 Transport Layer (Reliable Data Transfer) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Chapter 3 Transport Layer
Chapter 3 outline 3.1 transport-layer services
Session 8 INST 346 Technologies, Infrastructure and Architecture
Reliable Data Transfer Reliable Data Transfer.
Chapter 3 Transport Layer
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
Chapter 3 Transport Layer
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
Chapter 3 outline 3.1 transport-layer services
EEC-484 Computer Networks
8: Principles of Reliable Data Transfer
Chapter 3 Transport Layer
Never take life seriously. Nobody gets out alive anyway
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
CS 5565 Network Architecture and Protocols
Presentation transcript:

Transport Layer Transport Layer

Reliable data transfer: getting started send side receive side rdt_send(): called from above, (e.g., by app.). udt_send(): called by rdt, to transfer packet over unreliable channel to receiver rdt_rcv(): called when packet arrives on rcv-side of channel deliver_data(): called by rdt to deliver data to upper Transport Layer 3-2

Reliable data transfer: getting started We’ll: r incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) r consider only unidirectional data transfer m but control info will flow on both directions! r use finite state machines (FSM) to specify sender, receiver state 1 state 2 event causing state transition actions taken on state transition state: when in this “state” next state uniquely determined by next event event actions Transport Layer 3-3

R eliable transfer over a reliable channel r underlying channel perfectly reliable m no bit errors m no loss of packets r separate FSMs for sender, receiver: m sender sends data into underlying channel m receiver read data from underlying channel Wait for call from above packet = make_pkt(data) udt_send(packet) rdt_send(data) extract (packet,data) deliver_data(data) Wait for call from below rdt_rcv(packet) sender receiver Transport Layer 3-4

Channel with bit errors r underlying channel may flip bits in packet m checksum to detect bit errors r the question: how to recover from errors: m acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK m negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors m sender retransmits pkt on receipt of NAK  new mechanisms in rdt2.0 (beyond rdt1.0 ): m error detection m receiver feedback: control msgs (ACK,NAK) rcvr->sender Imagine a telephone conversation. How do humans recover from “errors” during conversation? Transport Layer 3-5

Channel with bit errors r underlying channel may flip bits in packet m checksum to detect bit errors r the question: how to recover from errors: m acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK m negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors m sender retransmits pkt on receipt of NAK Transport Layer 3-6

Group Assignment #1 Divide into groups of 4 and modify our original FSM to include ACKs and NACKs. Note that an ACK is sent when the packet arrives at the receiver with no errors and a NACK is sent when the packet is corrupted in transmission. Wait for call from above packet = make_pkt(data) udt_send(packet) rdt_send(data) extract (packet,data) deliver_data(data) Wait for call from below rdt_rcv(packet) sender receiver Transport Layer 3-7

On the Board Let’s discuss your solution (Please make any changes to your quiz notes if necessary). Transport Layer 3-8

Group Assignment #2 What happens if ACK/NAK corrupted? r sender doesn’t know what happened at receiver! r can’t just retransmit: possible duplicates Transport Layer 3-9

On the Board Let’s discuss your solution (Please make any changes to your quiz notes if necessary). Key: Introduce sequence numbers. Stop and Wait! Transport Layer 3-10

Group Assignment #3 How would you replace NACKs in your FSM? Transport Layer 3-11

On the Board Let’s discuss your solution (Please make any changes to your quiz notes if necessary). Key: instead of NAK, receiver sends ACK for last pkt received OK r receiver must explicitly include seq # of pkt being ACKed r duplicate ACK at sender results in same action as NAK: retransmit current pkt Transport Layer 3-12

Group Assignment #4 What if the underlying channels can also lose packets (data or ACKs)? Transport Layer 3-13

On the Board Let’s discuss your solution (Please make any changes to your quiz notes if necessary). Key: sender waits “reasonable” amount of time for ACK r retransmits if no ACK received in this time r if pkt (or ACK) just delayed (not lost): m retransmission will be duplicate, but use of seq. #’s already handles this m receiver must specify seq # of pkt being ACKed r requires countdown timer Transport Layer 3-14

rdt3.0 in action Transport Layer 3-15

rdt3.0 in action Transport Layer 3-16

For Next Time… Pipelined Protocols Take a look at the Go-Back-N and Selective Repeat protocol applets on the textbook website. How do these two protocols work? Transport Layer 3-17