Ch. 6- H.264/AVC Part I (pp.160~199) Sheng-kai Lin

Slides:



Advertisements
Similar presentations
March 24, 2004 Will H.264 Live Up to the Promise of MPEG-4 ? Vide / SURA March Marshall Eubanks Chief Technology Officer.
Advertisements

Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
Overview of the H.264/AVC Video Coding Standard
Overview of the H.264/AVC Video Coding Standard
H.264 Intra Frame Coder System Design Özgür Taşdizen Microelectronics Program at Sabanci University 4/8/2005.
Introduction to H.264 Video Standard
MPEG4 Natural Video Coding Functionalities: –Coding of arbitrary shaped objects –Efficient compression of video and images over wide range of bit rates.
Basics of MPEG Picture sizes: up to 4095 x 4095 Most algorithms are for the CCIR 601 format for video frames Y-Cb-Cr color space NTSC: 525 lines per frame.
2004 NTU CSIE 1 Ch.6 H.264/AVC Part2 (pp.200~222) Chun-Wei Hsieh.
Overview of the H. 264/AVC video coding standard.
-1/20- MPEG 4, H.264 Compression Standards Presented by Dukhyun Chang
Technion - IIT Dept. of Electrical Engineering Signal and Image Processing lab Transrating and Transcoding of Coded Video Signals David Malah Ran Bar-Sella.
MPEG-4 Objective Standardize algorithms for audiovisual coding in multimedia applications allowing for Interactivity High compression Scalability of audio.
1 Video Coding Concept Kai-Chao Yang. 2 Video Sequence and Picture Video sequence Large amount of temporal redundancy Intra Picture/VOP/Slice (I-Picture)
H.264/AVC Baseline Profile Decoder Complexity Analysis Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro IEEE TRANSACTIONS ON CIRCUITS.
Recursive End-to-end Distortion Estimation with Model-based Cross-correlation Approximation Hua Yang, Kenneth Rose Signal Compression Lab University of.
Overview of Error Resiliency Schemes in H.264/AVC Standard Sunil Kumar, Liyang Xu, Mrinal K. Mandal, and Sethuraman Panchanathan Elsevier Journal of Visual.
Overview of the H.264/AVC Video Coding Standard
Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard Detlev Marpe, Heiko Schwarz, and Thomas Wiegand IEEE Transactions.
Analysis, Fast Algorithm, and VLSI Architecture Design for H
H.264 / MPEG-4 Part 10 Nimrod Peleg March 2003.
School of Computing Science Simon Fraser University
Overview of the H.264/AVC Video Coding Standard ThomasWiegand, Gary J. Sullivan, Gisle Bj ø ntegaard, and Ajay Luthra IEEE TRANSACTIONS ON CIRCUITS AND.
CS :: Fall 2003 MPEG-1 Video (Part 1) Ketan Mayer-Patel.
BY AMRUTA KULKARNI STUDENT ID : UNDER SUPERVISION OF DR. K.R. RAO Complexity Reduction Algorithm for Intra Mode Selection in H.264/AVC Video.
BY AMRUTA KULKARNI STUDENT ID : UNDER SUPERVISION OF DR. K.R. RAO Complexity Reduction Algorithm for Intra Mode Selection in H.264/AVC Video.
Adaptive Deblocking Filter in H.264 Ehsan Maani Course Project:
H.264/AVC for Wireless Applications Thomas Stockhammer, and Thomas Wiegand Institute for Communications Engineering, Munich University of Technology, Germany.
H.264/AVC.
1 Image and Video Compression: An Overview Jayanta Mukhopadhyay Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur,
An Introduction to H.264/AVC and 3D Video Coding.
MPEG-2 Scalability Support Nimrod Peleg Update: Dec.2000.
Overview of the Scalable Video Coding Extension of the H.264/AVC Standard Kai-Chao Yang 12007/8Kai-Chao Yang, NTHU, Taiwan.
Kai-Chao Yang Hierarchical Prediction Structures in H.264/AVC.
Electrical Engineering National Central University Video-Audio Processing Laboratory Data Error in (Networked) Video M.K.Tsai 04 / 08 / 2003.
Windows Media Video 9 Tarun Bhatia Multimedia Processing Lab University Of Texas at Arlington 11/05/04.
Vineeth Shetty Kolkeri University of Texas, Arlington
Outline JVT/H.26L: History, Goals, Applications, Structure
MPEG-4 AVC (H.264). Introduction The H.264 is aimed at very low bit rate, real- time, low end-to-end delay, and mobile applications such as conversational.
Adaptive Multi-path Prediction for Error Resilient H.264 Coding Xiaosong Zhou, C.-C. Jay Kuo University of Southern California Multimedia Signal Processing.
- By Naveen Siddaraju - Under the guidance of Dr K R Rao Study and comparison of H.264/MPEG4.
Codec structuretMyn1 Codec structure In an MPEG system, the DCT and motion- compensated interframe prediction are combined. The coder subtracts the motion-compensated.
June, 1999 An Introduction to MPEG School of Computer Science, University of Central Florida, VLSI and M-5 Research Group Tao.
High Efficiency Video Coding Kiana Calagari CMPT 880: Large-scale Multimedia Systems and Cloud Computing.
VIDEO COMPRESSION USING NESTED QUADTREE STRUCTURES, LEAF MERGING, AND IMPROVED TECHNIQUES FOR MOTION REPRESENTATION AND ENTROPY CODING Present by fakewen.
- By Naveen Siddaraju - Under the guidance of Dr K R Rao Study and comparison between H.264.
Fundamentals of Multimedia Chapter 12 MPEG Video Coding II MPEG-4, 7 Ze-Nian Li & Mark S. Drew.
Figure 1.a AVS China encoder [3] Video Bit stream.
Guillaume Laroche, Joel Jung, Beatrice Pesquet-Popescu CSVT
Vineeth Shetty Kolkeri University of Texas, Arlington
Vamsi Krishna Vegunta University of Texas, Arlington
IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012 Kyungmin Lim, Seongwan Kim, Jaeho Lee, Daehyun Pak and Sangyoun Lee, Member, IEEE 報告者:劉冠宇.
1 Modular Refinement of H.264 Kermin Fleming. 2 What is H.264? Mobile Devices Low bit-rate Video Decoder –Follow on to MPEG-2 and H.26x Operates on pixel.
Video Compression—From Concepts to the H.264/AVC Standard
Block-based coding Multimedia Systems and Standards S2 IF Telkom University.
MPEG CODING PROCESS. Contents  What is MPEG Encoding?  Why MPEG Encoding?  Types of frames in MPEG 1  Layer of MPEG1 Video  MPEG 1 Intra frame Encoding.
Introduction to MPEG Video Coding Dr. S. M. N. Arosha Senanayake, Senior Member/IEEE Associate Professor in Artificial Intelligence Room No: M2.06
Multi-Frame Motion Estimation and Mode Decision in H.264 Codec Shauli Rozen Amit Yedidia Supervised by Dr. Shlomo Greenberg Communication Systems Engineering.
H. 261 Video Compression Techniques 1. H.261  H.261: An earlier digital video compression standard, its principle of MC-based compression is retained.
Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
Thomas Daede October 5, 2017 AV1 Update Thomas Daede October 5, 2017.
Overview of the Scalable Video Coding
Video-in-Video Insertion into a Pre-encoded Bit-stream
Research Topic Error Concealment Techniques in H.264/AVC for Wireless Video Transmission Vineeth Shetty Kolkeri EE Graduate,UTA.
Supplement, Chapters 6 MC Course, 2009.
Introduction to H.264/AVC Video Coding
Standards Presentation ECE 8873 – Data Compression and Modeling
MPEG4 Natural Video Coding
H.264/AVC Video Coding Standard
MPEG-1 MPEG is short for the ‘Moving Picture Experts Group‘.
Presentation transcript:

Shengkai Lin@CMLAB, NTUCSIE 2004 Ch. 6- H.264/AVC Part I (pp.160~199) Sheng-kai Lin Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

H.264/AVC Introduction (I) 4:2:0 Define VCL and NAL VCL: Video Coding Layer NAL: Network abstraction Variable block size Multiple reference frame ¼ sample motion compensation Shengkai Lin@CMLAB, NTUCSIE 2004

H.264/AVC Introduction (II) CAVLC CABAC Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Terms (I) Picture (frame) one or more slices Slice group of macroblock (1~ ) minimal inter-dependency between coded slices can limit the error propagation Macroblock Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Terms (II) I slice I macroblock only P slice P, I macroblock B slice B,I macroblock SI slice SP slice Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Terms (III) I macroblock intra prediction from decoded samples in the current slice for entire macroblock for each 4*4 block P macroblock inter prediction using past references 16*16, 16*8, 8*16, 8*8, 4*8, 8*4, 4*4 Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Terms (IV) B macroblock inter prediction using past/ future references list 0 past reference frame buffer list 1 future reference frame buffer RBSP (Raw Byte Sequence Payload) NAL payload Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 H.264/AVC profiles Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 H.264/AVC Encoder Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 H.264/AVC Decoder Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Reference Picture Management (I) Reference pictures are stored in decoded picture buffer (DPB) short/long term reference picture A decoded frame may be marked as unused for reference short term picture long term picture Shengkai Lin@CMLAB, NTUCSIE 2004

Reference Picture Management (II) “Sliding Window” memory management Keep #(long_term_pic+ short_term_pic) Remove short term picture if lack of space Adaptive memory control issued by encoder change the type of the ref frame IDR (Instantaneous Decoder Refresh) clear ref buffer I frame Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Redundant coded picture Send the duplicated part or all of a coded picture Error resilience Shengkai Lin@CMLAB, NTUCSIE 2004

Arbitrary Slice Order (ASO) The decoding order of the slices could be arbitrary Application example reduce end-end transmission delay in RT app Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Slice Group (I) former called “FMO” Flexible Macroblock Ordering a subset of the macroblocks and may contain one or more slices Application example Error resilience Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Slice Group (II) Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Inter Prediction Variable block size ¼ pixel motion compensation Shengkai Lin@CMLAB, NTUCSIE 2004

Interpolation Samples (I) Generate ½ samples by six tap FIR b, h, m, s FIR para :(1/32, -5/32, 5/8, 5/8, -5/32, 1/32) Generate center ½ sample by FIR j Generate ¼ sample by linear interpolation Shengkai Lin@CMLAB, NTUCSIE 2004

Interpolation Samples (II) Shengkai Lin@CMLAB, NTUCSIE 2004

Motion vector prediction (I) Encoding MV can cost a lot of bits especially small partition sizes Neighboring MV is highly correlated predictable encode the diff MVD and transmit it Shengkai Lin@CMLAB, NTUCSIE 2004

Motion vector prediction (II) Partitions excluding 16 × 8 and 8 × 16, MVp = (MVA+ MVB + MVC) /3 For 16 × 8 partitions, MVp of the upper 16 × 8 = MVB ;MVp for the lower 16 × 8 = MVA Shengkai Lin@CMLAB, NTUCSIE 2004

Motion vector prediction (III) For 8 × 16 partitions, MVp for the left 8 × 16 = MVA ;MVp for the right 8 × 16 = MVC For skipped macroblocks, do as 16 × 16 Inter mode Shengkai Lin@CMLAB, NTUCSIE 2004

Motion vector prediction (IV) Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Intra Prediction For Luma samples 4*4 block 9 prediction modes 16*16 block 4 modes I_PCM transmit the encoded samples w/o pred. & trans Shengkai Lin@CMLAB, NTUCSIE 2004

4*4 luma prediction modes Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 16*16 prediction modes Shengkai Lin@CMLAB, NTUCSIE 2004

8*8 Chroma Prediction Modes Similar to 16*16 luma intra-prediction except the different numbering. DC(mode 0) horizontal (mode 1) vertical(mode 2) plane (mode 3). Shengkai Lin@CMLAB, NTUCSIE 2004

Signaling Intra Prediction Modes (I) The choices of the mode should be signaled to the decoder. might cost lots of bits. Intra modes for neighboring 4 × 4 blocks are often correlated predict the parameters ! The prediction mode for luma coded in Intra-16×16 mode or chroma coded in Intra mode is signalled in the macroblock header and the following method is not used. Shengkai Lin@CMLAB, NTUCSIE 2004

Signaling Intra Prediction Modes (II) B A C If A and B are available, C = min (A,B) else if (neither A nor B are available) C = 2 (DC) else C = available (A,B) Shengkai Lin@CMLAB, NTUCSIE 2004

Signaling Intra Prediction Modes (III) Flag prev_intra4×4_pred_mode 1: most probable prediction mode is used. 0: Flag rem_intra4×4_pred_mode indicates the change of the mode Shengkai Lin@CMLAB, NTUCSIE 2004

Signaling Intra Prediction Modes (IV) If rem_intra4×4_pred_mode < most_probable_mode, the prediction mode = rem intra4×4 pred mode else the prediction mode = (rem_intra4×4_pred_mode+1) Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Deblocking filter Filter 4 vertical/horizontal boundaries of luma Filter 2 vertical/horizontal boundaries of chroma Affect up to 3 samples on the either side. The filter is stronger at places where there is likely to be significant blocking distortion e.g.: such as the boundary of an intra coded macroblock or a boundary between blocks that contain coded coefficients. Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Outline Introduction Baseline profile Reference Picture Management Slice Inter-prediction Intra-prediction Deblocking filter Transform and Quantisation Shengkai Lin@CMLAB, NTUCSIE 2004

Transform and Quantisation 3 transforms DCT-base transform for all 4*4 residual block Hadamard transform for 4*4 luma DC coefficient (in 16*16 intra) Hadamard transform for 2*2 chroma DC coefficient Shengkai Lin@CMLAB, NTUCSIE 2004

DCT-base transform (I) Integer transform Might be zero mismatch The code part of the algo need add and shift only Scale multiplication could be integrated into quantiser. Inverse operation could be down by 16-bit arithmetic. Shengkai Lin@CMLAB, NTUCSIE 2004

DCT-base transform (II) a=1/2, b = (2/5)1/2, d = 1/2 Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Quantisation Combine with the scale of the DCT Skip the rest details Shengkai Lin@CMLAB, NTUCSIE 2004

4*4 DC luma Transform and Quantisatoion |ZD(i, j)| = (|YD(i, j)| MF(0,0) + 2f ) >> (qbits +1) sign (ZD(i, j)) = sign (YD(i, j)) Shengkai Lin@CMLAB, NTUCSIE 2004

2*2 DC chroma Transform and Quantisatoion |ZD(i, j)| = (|YD(i, j)| MF(0,0) + 2f ) >> (qbits +1) sign (ZD(i, j)) = sign (YD(i, j)) Shengkai Lin@CMLAB, NTUCSIE 2004

Shengkai Lin@CMLAB, NTUCSIE 2004 Thank you Next time, we’ll start at CAVLC Bye… Shengkai Lin@CMLAB, NTUCSIE 2004