Elektrokeemia alused.

Slides:



Advertisements
Similar presentations
Electrochemistry Applications of Redox.
Advertisements

Electrochemistry Chapter 19
Chapter 20: Electrochemistry
Chapter 20: Electrochemistry
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Galvanic (= voltaic) Cells Redox reactions which occur spontaneously are called galvanic reactions. Zn will dissolve in a solution of copper(II) sulfate.
Slide 1 of 54 CHEMISTRY Ninth Edition GENERAL Principles and Modern Applications Petrucci Harwood Herring Madura Chapter 20: Electrochemistry.
Chapter 17 Electrochemistry
Types of Electrochemical Cells Electrolytic Cells: electrical energy from an external source causes a nonspontaneous reaction to occur Voltaic Cells (Galvanic.
Electrochemistry Batteries. Batteries Lead-Acid Battery A 12 V car battery consists of 6 cathode/anode pairs each producing 2 V. Cathode: PbO 2 on a metal.
Slide 1 of E cell, ΔG, and K eq  Cells do electrical work.  Moving electric charge.  Faraday constant, F = 96,485 C mol -1  elec = -nFE ΔG.
20-5 Batteries: Producing Electricity Through Chemical Reactions
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Prentice Hall © 2003Chapter 20 For the SHE, we assign 2H + (aq, 1M) + 2e -  H 2 (g, 1 atm) E  red = 0.
Chapter 18 Electrochemistry
Representing electrochemical cells The electrochemical cell established by the following half cells: Zn(s) --> Zn 2+ (aq) + 2 e - Cu 2+ (aq) + 2 e - -->
Electrochemistry Part 1 Ch. 20 in Text (Omit Sections 20.7 and 20.8) redoxmusic.com.
Predicting Spontaneous Reactions
1 Electrochemistry Chapter 17 Seneca Valley SHS Voltaic (Galvanic) Cells: Oxidation-Reduction Reactions Oxidation-Reduction Reactions Zn added.
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
Electrochemistry AP Chapter 20. Electrochemistry Electrochemistry relates electricity and chemical reactions. It involves oxidation-reduction reactions.
Electrochemistry Redox Oxidation States Voltaic Cells Balancing Equations Concentration Cells Nernst Equation CorrosionBatteriesElectrolysis Equilibrium.
ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chapter 19 Electrochemistry Mr. Watson HST. Mr. Watson Redox Reactions Oxidation loss of electrons Reduction gain of electrons oxidizing agent substance.
Chemistry 100 – Chapter 20 Electrochemistry. Voltaic Cells.
Electrochemistry Applications of Redox. Review  Oxidation reduction reactions involve a transfer of electrons.  OIL- RIG  Oxidation Involves Loss 
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Chapter 20 Electrochemistry.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
8–1 Ibrahim BarryChapter 20-1 Chapter 20 Electrochemistry.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter Eighteen Electrochemistry. 2 Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
John E. McMurry Robert C. Fay C H E M I S T R Y Chapter 17 Electrochemistry.
Tutorial schedule (3:30 – 4:50 PM) No. 1 (Chapter 7: Chemical Equilibrium) January 31 at Biology building, room 113 February 1 at Dillion Hall, room 254.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Prentice-Hall © 2007 General Chemistry: Chapter 20 Slide 1 of 54 Juana Mendenhall, Ph.D. Assistant Professor Lecture 4 March 22 Chapter 20: Electrochemistry.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Chapter There is an important change in how students will get their AP scores. This July, AP scores will only be available online. They will.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Do Now: What is current? Electric potential or voltage? An Electrode? REDOX? Which reaction below will take place spontaneously? Support your response.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Chapter 20: Electrochemistry. © 2009, Prentice-Hall, Inc. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Electrochemistry.
Chapter 20: Electrochemistry
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Electrochemical cells
Electrochemistry Chapter 19
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
Electrochemistry MAE-212
Electrochemistry Chapter 19
Chapter 20: Electrochemistry
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

Elektrokeemia alused

Rules for Assigning Oxidation States

Schematic for separating the oxidizing and reducing agents in a redox reaction.

Figure 18.2: Electron flow.

Ion flow keeps the charge neutral.

The salt bridge contains a strong electrolyte.

The porous disk allows ion flow.

Schematic of a battery.

Schematic of one cell of the lead battery.

A common dry cell battery.

A mercury battery.

21-1 Electrode Potentials and Their Measurement Cu(s) + 2Ag+(aq) Cu2+(aq) + 2 Ag(s) Cu(s) + Zn2+(aq) No reaction

An Electrochemical Half Cell Anode Cathode

An Electrochemical Cell

Terminology Electromotive force, Ecell. Cell diagram. The cell voltage or cell potential. Cell diagram. Shows the components of the cell in a symbolic way. Anode (where oxidation occurs) on the left. Cathode (where reduction occurs) on the right. Boundary between phases shown by |. Boundary between half cells (usually a salt bridge) shown by ||.

Terminology Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s) Ecell = 1.103 V

Terminology Galvanic cells. Electrolytic cells. Couple, M|Mn+ Produce electricity as a result of spontaneous reactions. Electrolytic cells. Non-spontaneous chemical change driven by electricity. Couple, M|Mn+ A pair of species related by a change in number of e-.

21-2 Standard Electrode Potentials Cell voltages, the potential differences between electrodes, are among the most precise scientific measurements. The potential of an individual electrode is difficult to establish. Arbitrary zero is chosen. The Standard Hydrogen Electrode (SHE)

Standard Hydrogen Electrode 2 H+(a = 1) + 2 e-  H2(g, 1 bar) E° = 0 V Pt|H2(g, 1 bar)|H+(a = 1) The two vertical lines indicate three phases are present. For simplicity we usually assume that a = 1 at [H+] = 1 M and replace 1 bar by 1 atm.

Standard Electrode Potential, E° E° defined by international agreement. The tendency for a reduction process to occur at an electrode. All ionic species present at a=1 (approximately 1 M). All gases are at 1 bar (approximately 1 atm). Where no metallic substance is indicated, the potential is established on an inert metallic electrode (ex. Pt).

Reduction Couples Cu2+(1M) + 2 e- → Cu(s) E°Cu2+/Cu = ? Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V anode cathode Standard cell potential: the potential difference of a cell formed from two standard electrodes. E°cell = E°cathode - E°anode

Standard Cell Potential Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) E°cell = 0.340 V E°cell = E°cathode - E°anode E°cell = E°Cu2+/Cu - E°H+/H2 0.340 V = E°Cu2+/Cu - 0 V E°Cu2+/Cu = +0.340 V H2(g, 1 atm) + Cu2+(1 M) → H+(1 M) + Cu(s) E°cell = 0.340 V

Measuring Standard Reduction Potential anode cathode cathode anode

Standard Reduction Potentials

21-3 Ecell, ΔG, and Keq Cells do electrical work. elec = -nFE Moving electric charge. Faraday constant, F = 96,485 C mol-1 elec = -nFE ΔG = -nFE ΔG° = -nFE°

Combining Half Reactions Fe3+(aq) + 3e- → Fe(s) E°Fe3+/Fe = ? Fe2+(aq) + 2e- → Fe(s) E°Fe2+/Fe = -0.440 V ΔG° = +0.880 J Fe3+(aq) + 3e- → Fe2+(aq) E°Fe3+/Fe2+ = 0.771 V ΔG° = -0.771 J Fe3+(aq) + 3e- → Fe(s) E°Fe3+/Fe = +0.331 V ΔG° = +0.109 V ΔG° = +0.109 V = -nFE° E°Fe3+/Fe = +0.109 V /(-3F) = -0.0363 V

Spontaneous Change ΔG < 0 for spontaneous change. Therefore E°cell > 0 because ΔGcell = -nFE°cell E°cell > 0 Reaction proceeds spontaneously as written. E°cell = 0 Reaction is at equilibrium. E°cell < 0 Reaction proceeds in the reverse direction spontaneously.

The Behavior or Metals Toward Acids M(s) → M2+(aq) + 2 e- E° = -E°M2+/M 2 H+(aq) + 2 e- → H2(g) E°H+/H2 = 0 V 2 H+(aq) + M(s) → H2(g) + M2+(aq) E°cell = E°H+/H2 - E°M2+/M = -E°M2+/M When E°M2+/M < 0, E°cell > 0. Therefore ΔG° < 0. Metals with negative reduction potentials react with acids

Relationship Between E°cell and Keq ΔG° = -RT ln Keq = -nFE°cell E°cell = nF RT ln Keq

Summary of Thermodynamic, Equilibrium and Electrochemical Relationships.

21-4 Ecell as a Function of Concentration ΔG = ΔG° -RT ln Q -nFEcell = -nFEcell° -RT ln Q Ecell = Ecell° - ln Q nF RT Convert to log10 and calculate constants Ecell = Ecell° - log Q n 0.0592 V The Nernst Equation:

Example 21-8 Applying the Nernst Equation for Determining Ecell. What is the value of Ecell for the voltaic cell pictured below and diagrammed as follows? Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s)

Example 21-8 Ecell = Ecell° - log Q n 0.0592 V Ecell = Ecell° - log n [Fe3+] [Fe2+] [Ag+] Ecell = 0.029 V – 0.018 V = 0.011 V Pt|Fe2+(0.10 M),Fe3+(0.20 M)||Ag+(1.0 M)|Ag(s) Fe2+(aq) + Ag+(aq) → Fe3+(aq) + Ag (s)

Concentration Cells Two half cells with identical electrodes but different ion concentrations. Pt|H2 (1 atm)|H+(x M)||H+(1.0 M)|H2(1 atm)|Pt(s) 2 H+(1 M) + 2 e- → H2(g, 1 atm) H2(g, 1 atm) → 2 H+(x M) + 2 e- 2 H+(1 M) → 2 H+(x M)

Concentration Cells Ecell = Ecell° - log Q n 0.0592 V 2 H+(1 M) → 2 H+(x M) Ecell = Ecell° - log n 0.0592 V x2 12 Ecell = 0 - log 2 0.0592 V x2 1 Ecell = - 0.0592 V log x Ecell = (0.0592 V) pH

Measurement of Ksp Ag|Ag+(sat’d AgI)||Ag+(0.10 M)|Ag(s) Ag+(0.100 M) + e- → Ag(s) Ag(s) → Ag+(sat’d) + e- Ag+(0.100 M) → Ag+(sat’d M) Ion concentration difference provides a basis for determining Ksp

Example 21-10 Using a Voltaic Cell to Determine Ksp of a Slightly Soluble Solute. With the date given for the reaction on the previous slide, calculate Ksp for AgI. AgI(s) → Ag+(aq) + I-(aq) Let [Ag+] in a saturated Ag+ solution be x: Ag+(0.100 M) → Ag+(sat’d M) Ecell = Ecell° - log Q = n 0.0592 V Ecell° - log [Ag+]0.10 M soln [Ag+]sat’d AgI

Example 21-10 Ecell = Ecell° - log n 0.0592 V [Ag+]0.10 M soln [Ag+]sat’d AgI Ecell = Ecell° - log n 0.0592 V 0.100 x 0.417 = 0 - (log x – log 0.100) 1 0.0592 V 0.417 log 0.100 - 0.0592 log x = = -1 – 7.04 = -8.04 x = 10-8.04 = 9.110-9 Ksp = x2 = 8.310-17

21-5 Batteries: Producing Electricity Through Chemical Reactions Primary Cells (or batteries). Cell reaction is not reversible. Secondary Cells. Cell reaction can be reversed by passing electricity through the cell (charging). Flow Batteries and Fuel Cells. Materials pass through the battery which converts chemical energy to electric energy.

The Leclanché (Dry) Cell

Dry Cell Zn(s) → Zn2+(aq) + 2 e- Oxidation: 2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH- Reduction: NH4+ + OH- → NH3(g) + H2O(l) Acid-base reaction: NH3 + Zn2+(aq) + Cl- → [Zn(NH3)2]Cl2(s) Precipitation reaction:

Alkaline Dry Cell Reduction: 2 MnO2(s) + H2O(l) + 2 e- → Mn2O3(s) + 2 OH- Oxidation reaction can be thought of in two steps: Zn(s) → Zn2+(aq) + 2 e- Zn2+(aq) + 2 OH- → Zn (OH)2(s) Zn (s) + 2 OH- → Zn (OH)2(s) + 2 e-

Lead-Acid (Storage) Battery The most common secondary battery

Lead-Acid Battery Reduction: PbO2(s) + 3 H+(aq) + HSO4-(aq) + 2 e- → PbSO4(s) + 2 H2O(l) Oxidation: Pb (s) + HSO4-(aq) → PbSO4(s) + H+(aq) + 2 e- PbO2(s) + Pb(s) + 2 H+(aq) + HSO4-(aq) → 2 PbSO4(s) + 2 H2O(l) E°cell = E°PbO2/PbSO4 - E°PbSO4/Pb = 1.74 V – (-0.28 V) = 2.02 V

The Silver-Zinc Cell: A Button Battery Zn(s),ZnO(s)|KOH(sat’d)|Ag2O(s),Ag(s) Zn(s) + Ag2O(s) → ZnO(s) + 2 Ag(s) Ecell = 1.8 V

The Nickel-Cadmium Cell Cd(s) + 2 NiO(OH)(s) + 2 H2O(L) → 2 Ni(OH)2(s) + Cd(OH)2(s)

Fuel Cells O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq) 2{H2(g) + 2 OH-(aq) → 2 H2O(l) + 2 e-} 2H2(g) + O2(g) → 2 H2O(l) E°cell = E°O2/OH- - E°H2O/H2 = 0.401 V – (-0.828 V) = 1.229 V  = ΔG°/ ΔH° = 0.83

Air Batteries 4 Al(s) + 3 O2(g) + 6 H2O(l) + 4 OH- → 4 [Al(OH)4](aq)

21-6 Corrosion: Unwanted Voltaic Cells In neutral solution: O2(g) + 2 H2O(l) + 4 e- → 4 OH-(aq) EO2/OH- = 0.401 V 2 Fe(s) → 2 Fe2+(aq) + 4 e- EFe/Fe2+ = -0.440 V 2 Fe(s) + O2(g) + 2 H2O(l) → 2 Fe2+(aq) + 4 OH-(aq) Ecell = 0.841 V In acidic solution: O2(g) + 4 H+(aq) + 4 e- → 4 H2O (aq) EO2/OH- = 1.229 V

Corrosion

Corrosion Protection

Corrosion Protection

21-7 Electrolysis: Causing Non-spontaneous Reactions to Occur Galvanic Cell: Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s) EO2/OH- = 1.103 V Electolytic Cell: Zn2+(aq) + Cu(s) → Zn(s) + Cu2+(aq) EO2/OH- = -1.103 V

Complications in Electrolytic Cells Overpotential. Competing reactions. Non-standard states. Nature of electrodes. Overcome interactions a the electrode surface Hg and H2 overpotential is 1.5 V

Quantitative Aspects of Electrolysis 1 mol e- = 96485 C Charge (C) = current (C/s)  time (s) ne- = I  t F

21-8 Industrial Electrolysis Processes

Electroplating

Chlor-Alkali Process

Focus On Membrane Potentials

Nernst Potential, Δ

Chapter 21 Questions Develop problem solving skills and base your strategy not on solutions to specific problems but on understanding. Choose a variety of problems from the text as examples. Practice good techniques and get coaching from people who have been here before.