Space weather effects of the solar wind on different regions of the magnetosphere Viviane PIERRARD BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE.

Slides:



Advertisements
Similar presentations
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Advertisements

The challenges and problems in measuring energetic electron precipitation into the atmosphere. Mark A. Clilverd British Antarctic Survey, Cambridge, United.
Session A Wrap Up. He Abundance J. Kasper Helium abundance variation over the solar cycle, latitude and with solar wind speed Slow solar wind appears.
Electron Acceleration in the Van Allen Radiation Belts by Fast Magnetosonic Waves Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, N. P. Meredith 1.
Alfvénic turbulence at ion kinetic scales Yuriy Voitenko Solar-Terrestrial Centre of Excellence, BIRA-IASB, Brussels, Belgium Recent results obtained in.
The Solar Corona and Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
The Structure of the Parallel Electric Field and Particle Acceleration During Magnetic Reconnection J. F. Drake M.Swisdak M. Shay M. Hesse C. Cattell University.
Earth’s Radiation Belt Xi Shao Department of Astronomy, University Of Maryland, College Park, MD
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
1 K. Stasiewicz, Plasma Space Science Center, NCKU Swedish Institute of Space Physics, Uppsala Multi-spacecraft studies of nonlinear waves.
Observation and Theory of Substorm Onset C. Z. (Frank) Cheng (1,2), T. F. Chang (2), Sorin Zaharia (3), N. N. Gorelenkov (4) (1)Plasma and Space Science.
Elements of kinetic theory Introduction Phase space density Equations of motion Average distribution function Boltzmann-Vlasov equation Velocity distribution.
S. Elkington, June 11, 2009 An overview of Earth’s magnetosphere and its coupling with the solar wind Scot R. Elkington LASP, University of Colorado
Geospace Variability through the Solar Cycle John Foster MIT Haystack Observatory.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Tangential discontinuities as “roots” of auroral arcs: an electrostatic magnetosphere-ionosphere coupling mode M. Echim (1,2), M. Roth (1), J.de Keyser.
Two-dimensional hybrid modeling of wave heating in the solar wind plasma L. Ofman 1, and A.F. Viñas 2 1 Department of Physics, Catholic University of America,
The Sun and the Heliosphere: some basic concepts…
The First Two Years of IMAGE Jim Burch Southwest Research Institute Magnetospheric Imaging Workshop Yosemite National Park, California February 5-8, 2002.
1 Introduction The TOP-modelPotential applicationsConclusion The Transient Observations-based Particle Model and its potential application in radiation.
Comparisons of Inner Radiation Belt Formation in Planetary Magnetospheres Richard B Horne British Antarctic Survey Cambridge Invited.
Splinter 1: Space science & weather Chair: J. De Keyser Summary: F. Clette 03/06/20101STCE: Space Science & Weather.
Abstract Although Parker was the first to describe the solar wind successfully at the time, his elegant theory still masks a number of fundamental problems.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
Space Weather from Coronal Holes and High Speed Streams M. Leila Mays (NASA/GSFC and CUA) SW REDISW REDI 2014 June 2-13.
Large-Amplitude Electric Fields Associated with Bursty Bulk Flow Braking in the Earth’s Plasma Sheet R. E. Ergun et al., JGR (2014) Speaker: Zhao Duo.
The Sun.
Paired velocity distributions in the solar wind Vasenin Y.M., Minkova N.R. Tomsk State University Russia STIMM-2 Sinaia, Romania, June 12-16, 2007.
1 The Inner Magnetosphere Nathaniel Stickley George Mason University.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
PAPER I. ENA DATA ANALYSIS RESULTS. The Imager for Magnetopause-to- Aurora Global Exploration (IMAGE) missionis the first NASA Mid-size Explorer (MIDEX)
Formation of Power Law Tail with Spectral Index -5 G. Gloeckler and L. A. Fisk Department of Atmospheric, Oceanic and Space Sciences University of Michigan,
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © Ionosphere II: Radio Waves April 12, 2012.
A generic description of planetary aurora J. De Keyser, R. Maggiolo, and L. Maes Belgian Institute for Space Aeronomy, Brussels, Belgium
Earth’s Magnetosphere NASA Goddard Space Flight Center
07/11/2007ESSW4, Brussels1 Coupling between magnetospheric and auroral ionospheric scales during space weather events M. ECHIM (1,2), M. ROTH(1) and J.
Pre-accelerated seed populations of energetic particles in the heliosphere N. A. Schwadron* and M. Desai Southwest Research Institute *Also, Boston University.
17th Cluster Workshop May 2009 R. Maggiolo 1, M. Echim 1,2, M. Roth 1, J. De Keyser 1 1 BIRA-IASB Brussels, Belgium 2 ISS Bucharest, Romania Quasi-stationary.
PHYS 1621 Proton-proton cycle 3 steps. PHYS 1622 Layers of the Sun Mostly Hydrogen with about 25% Helium. Small amounts of heavier elements Gas described.
PARTICLES IN THE MAGNETOSPHERE
Mapping the sub-oval proton auroras into the magnetosphere A. G. Yahnin and T. A. Yahnina Polar Geophysical Institute, Apatity, Russia Plasma Physics in.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
Storm-dependent Radiation Belt Dynamics Mei-Ching Fok NASA Goddard Space Flight Center, USA Richard Horne, Nigel Meredith, Sarah Glauert British Antarctic.
HISAKI mission – ひさき – Chihiro Tao 1,2, Nicolas Andre 1, Hisaki/EXCEED team 1. IRAP, Univ. de Toulouse/UPS-OMP/CNRS 2. now at NICT
Lecture 15 Modeling the Inner Magnetosphere. The Inner Magnetosphere The inner magnetosphere includes the ring current made up of electrons and ions in.
WP4 MHD/kinetic modeling BISA,KUL,ROB Viviane PIERRARD Presenter: Yuriy VOITENKO Belgian Institute for Space Aeronomy a)Kinetic/MHD complementarity b)Kinetic.
Introduction to Plasma Physics and Plasma-based Acceleration
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
Source and seed populations for relativistic electrons: Their roles in radiation belt changes A. N. Jaynes1, D. N. Baker1, H. J. Singer2, J. V. Rodriguez3,4.
GEM Student Tutorial: GGCM Modeling (MHD Backbone)
Data-Model Comparisons
The Magnetosphere Feifei Jiang, UCLA
Solar Wind and CMEs with the Space Weather Modeling Framework
ARTEMIS – solar wind/ shocks
2005 Joint SPD/AGU Assembly, SP33A–02
Introduction to Space Weather Interplanetary Transients
Shyama Narendranath Space Astronomy Group ISRO Satellite Centre
Ch 2 - Kinetic Theory reinisch_
ESS 154/200C Lecture 19 Waves in Plasmas 2
Yuki Takagi1*, Kazuo Shiokawa1, Yuichi Otsuka1, and Martin Connors2  
Kinetic Theory.
Kinetic Theory.
Richard B. Horne British Antarctic Survey Cambridge UK
Presentation transcript:

Space weather effects of the solar wind on different regions of the magnetosphere Viviane PIERRARD BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA) IAP Charm

Kinetic models based on the solution of the evolution equation Solar wind Exosphere: Kn>>1 Vlasov equation Exobase: Kn=1 Solar wind escape: Rs Barosphere: Kn<<1 Fokker-Planck 1. Vlasov (analytic) Pierrard et al., Sol. Phys., Fokker-Planck Pierrard et al., JGR, WPI kinetic Alfven waves Pierrard & Voitenko, Sol. Phys WPI Whistler turbulence Pierrard et al., Sol. Phys Pierrard V., “Exploring the solar wind”, , Intech, ISBN , 2012 Knudsen = mean free path/H Friction Diffusion

Velocity distribution functions observed in situ in the solar wind Electrons 1 AU WINDProtons 0.5 AU HeliosIons He O Ne 1 AU WIND halo core strahl B

Ulysses electron distributions fitted with Kappa functions Results : = 3.8 +/- 0.4 for v > 500 km/s (4878 observ.) = 4.5 +/- 0.6 for v < 500 km/s (11479 observ.) Ions WIND:  =2.5 General in space plasmas Kappa functions Pierrard and Lazar, Sol. Phys., 287, , /s , 2010

Solar wind kinetic model: profiles of the moments Maxwellian Kappa=2 Pierrard, Space Sci. Rev., 172, 315, 2012 Not classical heat flux Pierrard et al., Solar Phys., 2014

Solar wind minor ions Pierrard, Space Sci. Rev., 172, 315, 2012 Kappa=5 for all species T=10000 K at the top of chromosphere Heating of the corona by velocity filtration Acceleration of the ions

Solar wind model SDO observations 29 May 2013 coronal holes directed to the Earth. Pierrard & Pieters, ASP, , 2014 ACE observations of velocity at 1 AU

Model with collisions and whistler turbulence Bottom (collision-dominated): f(2 R s,  >0,v) = maxwellian Top (collisionless conditions): f(14 R s,  0,v<v e ) f(14 R s,  v e ) = 0 Pierrard, Lazar & Schlickeiser, Sol. Phys. 287, 421, 2011 Electron velocity distribution function

Kp [0-9] stations (11N, 2S 44-60°) Dst stations (eq) AE stations N (aur) PC station (pol) Geomagnetic activity indices (based on B at the surface of the Earth) Storms and substorms

CR2075 Corotating Interaction Regions CR2075 CR2076 u B Dst Depends on u, B,  n

Auroral regions Pierrard et al., J. Atmosph. Sol. Terr. Phys., 69 doi: /j.jastp , 2007 Current-voltage relationship FUV IMAGE

Terrestrial magnetosphere

Electron flux in the MeV at 820 km measured by EPT on PROBA-V Van Allen Radiation belts Energetic protons and electrons Pierrard et al., Space Sci. Rev., doi: /s , 2014

AP8 Max J(E>10 MeV)AE8 Max J(E >1 MeV) L (Re) internal: p+ (100 keV-500 MeV) external: p+ (<10 MeV) e- (10 keV-10 MeV) e- (10 keV-5 MeV) 4 Rt 10 Rt Van Allen Radiation belts

High flux variations Benck et al., SWSC, 3, doi: /SWSC/ , 2013

Dynamic model of the radiation belts Dynamic model of the electron radiation belts based on CLUSTER/RAPID observations ( ) Pierrard & Borremans, subm. SWSC, 2014

Links Plasmasphere/radiation belts Plasmasphere: 1 eVRadiation belts: > 200 keV Pierrard and Benck, AIP, 1500, 216, 2012 (SAC-C) Darrouzet et al., JGR, 118, , 2013 (Cluster)

/ Terrestrial plasmasphere and plasmapause position Pierrard and Voiculescu, GRL 38, L12104, 2011 on Ionosphere, GPS Web-based forecasting and nowcasting model

Before substorm 9 June h00 After substorm 10 June h00 Comparison with observations IMAGE ( ): RPI and EUV He + ions at 30.4 nm

Terrestrial polar wind Input: n and T at 2000 km +++ e -  p + … O + Pierrard and Borremans, ASP 459, 2012

Pierrard V., Planet. Space Sci., doi : /j.pss , 2009 Electron density in the exosphere of Jupiter Auroral oval and footprints on Jupiter Saturn and Jupiter

- CMEs and solar wind high speed streams cause geomagnetic storms and substorms - Variations measured by geomagnetic activity indices (Kp, Dst) - Auroral oval larger and wider - High flux variations in the outer electron Van Allen belt - High variability of the plasmapause position - Comparison with the magnetosphere of other planets - Kinetic models developed for space plasmas - Models provided on IASB-BIRA/STCE / IUAP CHARM Conclusions

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Conclusions CMEs and solar wind high speed streams cause geomagnetic substorms and storms Variations measured by geomagnetic activity indices at the ground (Kp, Dst) Auroral oval larger and wider High flux variations in the outer electron Van Allen belt High variability of the plasmapause position Comparison with the magnetosphere of other planets Kinetic models developed for space plasmas Models provided on IASB-BIRA/STCE / IUAP CHARM

The moments of f Number density [m -3 ] Particle flux [m -2 s -1 ] Bulk velocity [m s -1 ] Energy flux [Jm -2 s -1 ] Pressure [Pa] Temperature [K]

Kappa distributions: theory and applications in space plasmas Generation of Kappa in space plasmas: turbulence and long-range properties of particle interactions in a plasma - plasma immersed in suprathermal radiation (Hasegawa et al., 1985) - random walk with power law (Collier, 1993) - turbulent thermodynamic equilibrium (Treumann, 1999) - entropy generalization in nonextensive Tsallis statistics (Leubner, 2002) - resonant interactions with whistler waves (Vocks and Mann, 2003) Dispersion properties and stability of Kappa distributions –Vlasov-Maxwell kinetics. Dielectric tensor –The modified plasma dispersion function –Isotropic /Anisotropic Kappa distributions Pierrard and Lazar, Sol. Phys., 287, , /s , 2010

Consequence 3. Solar wind accelerated to high bulk velocity due to the presence of suprathermal electrons (Vlasov model)  =2 Maxwell Pierrard and Lemaire, JGR 101, , 1996 Pierrard, Space Sci. Rev., 172, , 2012

Consequence: Non classical heat flux Temperature inversion around 2 Rs - Peak in electron temperature at 2 Rs - Corresponds to coronal brightness measurements obtained during solar eclipses Heat flux -not given by the Spitzer-Harm expression -Spitzer-Harm heat flux assumed in fluid models -No need of additional heating source to heat the corona or to accelerate the wind Pierrard V., K. Borremans, K. Stegen and J. Lemaire, Solar Phys., doi: /S x, 2014 Te model Te obs. polar Te obs. equator Qe model Qp model Classical heat flux

Introduction Solar wind Kinetic models Magnetosphere Geomagnetic activity indices Aurora Van Allen belts Plasmasphere-ionosphere Conclusions