Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.

Slides:



Advertisements
Similar presentations
I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
Advertisements

Behavior of Gases. Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide Gas molecules save your life! 2 NaN.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant, random, straight-line.
Chapter Pressure Macro-Scale Pressure is the amount of force exerted over a given area  Familiar unit is “pounds per square inch” or psi (tire.
Gas Laws. Properties of Gases b Expand to completely fill their container b Take the shape of their container b Low density – mass divided by volume.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Gas Laws Gas Laws highly compressible. occupy the full volume of their containers. exert a uniform pressure on all inner surfaces of a container diffuse.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
The Gas Laws The Behavior of Gases. The Combined Gas Law The combined gas law expresses the relationship between pressure, volume and temperature of a.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Behavior of Gases (Read p ) Topic 4- Gases S.Panzarella.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Behavior of Gases  Gases behave much differently than liquids and solids and thus, have different laws.  Because gas molecules have no forces keeping.
I. The Gas Laws Ch Gases. A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2.
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Gases Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws.
III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
C. Johannesson III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Outline General properties of gas Kinetic molecular theory of gas Development of the ideal gas law Ideal gas law PV=nRT Conclusion exercise.
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch Gases.  To describe a gas fully you need to state 4 measurable quantities:  Volume  Temperature  Number of molecules  pressure.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
The Gas Laws The Behavior of Gases. STPSTP b Standard Temperature and Pressure: b 273 K and 760 mm Hg b Or 0 C and 1atm.
II. The Gas Laws (p ) Ch. 10 & 11 - Gases.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
Ideal Gas Law Ch. 10 & 11 - Gases. V n A. Avogadro’s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Gas Laws Chapter 12. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
BellringerBellringer b An average human heart beats 60 times per minute. If the average person lives to the age of 75, how many times does the average.
Gases I. Physical Properties.
Ch. 10 – The Mole Molar Conversions.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gas laws.
The Gas Laws.
Gases Physical Properties.
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

Kinetic Molecular Theory

What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you think will have more pressure?

A. Kinetic Molecular Theory

Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction b Gases have very low densities. no volume = lots of empty space

TemperatureTemperature K = ºC b Temp: measure of avg. KE (speed) b Always use Kelvin when working with gases. Kelvin Is directly proportional to temp. Always positive

PressurePressure b Pressure: Amount of force exerted on a container/object b Barometer Measures atmospheric pressure Mercury Barometer

STPSTP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP

Pressure Demo b Experiencing pressure Variables Observations Explanation:

PressurePressure b KEY UNITS AT SEA LEVEL kPa = 1 atm = 760 mm Hg =760 torr = 14.7 psi kPa: kilopascal Atm: atmosphere mmHg: millimeters Mercury Psi: pounds per square inch How would you find a pascal?

PracticePractice b If the atmospheric pressure in Colorado is 525 mmHg, what is the pressure in kPa?

Real Gases b Particles in a REAL gas… have their own volume attract each other b Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

II. The Gas Laws BOYLES CHARLES GAY- LUSSAC Ch Gases

Boyles Law Demo b Experiencing pressure Variables Observations Explanation:

A. Boyle’s Law P V P 1 V 1 = P 2 V 2

A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2

B. Charles Law Demo b Experiencing pressure Variables Observations Explanation:

V T B. Charles’ Law

V T b The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure

P T C. Gay-Lussac’s Law

P T b The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume

D. Combined Gas Law P1V1T1P1V1T1 = P2V2T2P2V2T2

GIVEN: V 1 = 473 cm 3 T 1 = 36°C = 309K V 2 = ? T 2 = 94°C = 367K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 473 cm 3 at 36°C. Find its volume at 94°C. CHARLES’ LAW TT VV (473 cm 3 )(367 K)=V 2 (309 K) V 2 = 562 cm 3

GIVEN: V 1 = 100. mL P 1 = 150. kPa V 2 = ? P 2 = 200. kPa WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW PP VV (150.kPa)(100.mL)=(200.kPa)V 2 V 2 = 75.0 mL

GIVEN: V 1 = 7.84 cm 3 P 1 = 71.8 kPa T 1 = 25°C = 298 K V2 = ?V2 = ? P 2 = kPa T 2 = 273 K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 (71.8 kPa)(7.84 cm 3 )(273 K) =( kPa) V 2 (298 K) V 2 = 5.09 cm 3 E. Gas Law Problems b A gas occupies 7.84 cm 3 at 71.8 kPa & 25°C. Find its volume at STP. P  T  VV COMBINED GAS LAW

GIVEN: P 1 = 765 torr T 1 = 23°C = 296K P 2 = 560. torr T 2 = ? WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW PP TT (765 torr)T 2 = (560. torr)(309K) T 2 = 226 K = -47°C

III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases

V n A. Avogadro’s Principle

V n b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas

PV T VnVn PV nT B. Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.315 dm 3  kPa/mol  K = R

B. Ideal Gas Law UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.315 dm 3  kPa/mol  K PV=nRT

GIVEN: P = ? atm n = mol T = 16°C = 289 K V = 3.25 L R = L  atm/mol  K WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol L  atm/mol  K K P = 3.01 atm B. Ideal Gas Law b Calculate the pressure in atmospheres of mol of He at 16°C & occupying 3.25 L. IDEAL GAS LAW

GIVEN: V = ?V = ? n = 85 g T = 25°C = 298 K P = kPa R = dm 3  kPa/mol  K B. Ideal Gas Law b Find the volume of 85 g of O 2 at 25°C and kPa. = 2.7 mol WORK: 85 g 1 mol = 2.7 mol g PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm 3  kPa/mol  K K V = 64 dm 3 IDEAL GAS LAW