M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos.

Slides:



Advertisements
Similar presentations
HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction.
Advertisements

Eric Prebys, FNAL. USPAS, Knoxville, TN, Jan , 2014 Lecture 13 - Synchrotron Radiation 2 For a relativistic particle, the total radiated power (S&E.
Eric Prebys, FNAL.  We will tackle accelerator physics the way we tackle most problems in classical physics – ie, with 18 th and 19 th century mathematics!
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Syllabus and slides Lecture 1: Overview and history of Particle accelerators (EW) Lecture 2: Beam optics I (transverse) (EW) Lecture 3: Beam optics II.
Synchrotron Radiation What is it ? Rate of energy loss Longitudinal damping Transverse damping Quantum fluctuations Wigglers Rende Steerenberg (BE/OP)
Transverse optics 2: Hill’s equation Phase Space Emittance & Acceptance Matrix formalism Rende Steerenberg (BE/OP) 17 January 2012 Rende Steerenberg (BE/OP)
Wilson Lab Tour Guide Orientation 11 December 2006 CLASSE 1 Focusing and Bending Wilson Lab Tour Guide Orientation M. Forster Mike Forster 11 December.
Review of basic mathematics: Vectors & Matrices Differential equations Rende Steerenberg (BE/OP) 16 January 2012 Rende Steerenberg (BE/OP) 16 January 2012.
Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik.
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Mark Rayner, Analysis workshop 4 September ‘08: Use of TOFs for Beam measurement & RF phasing, slide 1 Use of TOFs for Beam measurement & RF phasing Analysis.
Lattice calculations: Lattices Tune Calculations Dispersion Momentum Compaction Chromaticity Sextupoles Rende Steerenberg (BE/OP) 17 January 2012 Rende.
Lecture 5: Beam optics and imperfections
Chapter 15 Oscillatory Motion.
Introduction to particle accelerators Walter Scandale CERN - AT department Roma, marzo 2006.
Basic Mathematics Rende Steerenberg BE/OP CERN Accelerator School Basic Accelerator Science & Technology at CERN 3 – 7 February 2014 – Chavannes de Bogis.
Basic Mathematics for Accelerators
Quadrupole Transverse Beam Optics Chris Rogers 2 June 05.
Lecture 3 - E. Wilson - 22 Oct 2014 –- Slide 1 Lecture 3 - Magnets and Transverse Dynamics I ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Eric Prebys, FNAL.  Let’s look at the Hill’ equation again…  We can write the general solution as a linear combination of a “sine-like” and “cosine-like”
Influence of the Third Harmonic Module on the Beam Size Maria Kuhn University of Hamburg Bachelor Thesis Presentation.
Physics. Simple Harmonic Motion - 3 Session Session Objectives.
The coordinates of the centre of mass are M is the total mass of the system Use the active figure to observe effect of different masses and positions Use.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Eric Prebys, FNAL.  In terms of total charge and current  In terms of free charge an current USPAS, Knoxville, TN, January 20-31, 2013 Lecture 2 - Basic.
Mark Rayner 14/8/08Analysis Meeting: Emittance measurement using the TOFs 1 Emittance measurement using the TOFs The question: can we use position measurements.
Synchrotron Radiation
Zeuten 19 - E. Wilson - 1/18/ Slide 1 Recap. of Transverse Dynamics E. Wilson – 15 th September 2003  Transverse Coordinates  Relativistic definitions.
Tuesday, 02 September 2008FFAG08, Manchester Stephan I. Tzenov1 Modeling the EMMA Lattice Stephan I. Tzenov and Bruno D. Muratori STFC Daresbury Laboratory,
HST 2009 Introduction to AcceleratorsD. Brandt 1 The LHC: Physics without mathematics ! D. Brandt, CERN.
Linear Imperfections equations of motion with imperfections: smooth approximation orbit correction for the un-coupled case transfer matrices with coupling:
Lecture 7 - E. Wilson - 2/16/ Slide 1 Lecture 7 - Circulating Beams and Imperfections ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Accelerator Fundamentals Brief history of accelerator Accelerator building blocks Transverse beam dynamics coordinate system Mei Bai BND School, Sept.
Zeuten 2 - E. Wilson - 2/26/ Slide 1 Transverse Dynamics – E. Wilson – CERN – 16 th September 2003  The lattice calculated  Solution of Hill 
Lecture 4 - E. Wilson - 23 Oct 2014 –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Lecture 4 - E. Wilson –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
Accelerator Physics & Diagnostics, H.Wiedemann, DITANET, March 6 – 11, 2011, Stockholm, Sweden Accelerator Physics for Diagnostics Helmut Wiedemann Stanford.
E.Wildner NUFACT09 School 1 Accelerator Physics Transverse motion Elena Wildner.
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Contents:  Overview of the Lectures  A Brief History on Particle Accelerators  The Mathematics we Need  Overview of the CERN Accelerator Complex 
Lecture 3 Transverse Optics II
Accelerator Laboratory OPTICS BASICS S. Guiducci.
Professor Philip Burrows John Adams Institute for Accelerator Science Oxford University ACAS School for Accelerator Physics January 2014 Longitudinal Dynamics.
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Motion in an Undulator Sven Reiche :: SwissFEL Beam Dynamics Group :: Paul Scherrer Institute CERN Accelerator School.
Lecture 2 Transverse Optics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Lecture 5 - E. Wilson - 6/29/ Slide 1 Lecture 5 ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Contents:  Lattices and TWISS Parameters  Tune Calculations and Corrections  Dispersion  Momentum Compaction  Chromaticity  Sextupole Magnets 
Damping rings, Linear Collider School Linear beam dynamics overview Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN.
AXEL-2017 Introduction to Particle Accelerators
Lecture 8 - Circulating Beams and Imperfections
Lecture A3: Damping Rings
AXEL-2017 Introduction to Particle Accelerators
Why I wanted to learn more about coupling:
Academic Training Lecture 2 : Beam Dynamics
Lecture 4 - Transverse Optics II
Review of Accelerator Physics Concepts
Lecture 4 - Transverse Optics II
Lecture 7 - Circulating Beams and Imperfections
Electron Rings Eduard Pozdeyev.
Lecture 4 - Transverse Optics II
AXEL-2011 Introduction to Particle Accelerators
AXEL-2011 Introduction to Particle Accelerators
Lecture 5 ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
Lecture 2 - Transverse motion
Lecture 5 ACCELERATOR PHYSICS MT 2015 E. J. N. Wilson.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
Presentation transcript:

M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos

M. LindroosNUFACT06 School Co-ordinates

M. LindroosNUFACT06 School 2 particles in a dipole field Two particles in a dipole field, with different initial angles

M. LindroosNUFACT06 School The second particle oscillates around the first. This type of oscillation forms the basis of all transverse motion in an accelerator. The horizontal displacement of the second particle with respect to the first

M. LindroosNUFACT06 School Effect of a uniform dipole field of length L and field B The beam is deviated by an angle , B  = magnetic rigidity. Dipole

M. LindroosNUFACT06 School Magnetic Rigidity The force evB on a charged particle moving with velocity v in a dipole field of strength B is equal to it’s mass multiplied by it’s acceleration towards the centre of it’s circular path. where  = radius of curvature of the path remember p = momentum = mv B  is called the magnetic rigidity, and if we put in all the correct units we get :- B  [kG.m] = p (if p is in “GeV/c” ) B  [T.m] = p (if p is in “GeV/c” )

M. LindroosNUFACT06 School Quadrupoles A quadrupole has 4 poles, (2 North and 2 South) arranged symmetrically around the beam. No magnetic field along the central axis Magnetic field BxBx ByBy

M. LindroosNUFACT06 School The “normalised” gradient, k is defined as On the x (horizontal) axis the field is vertical and is given by:- B y  x On the y (vertical) axis the field is horizontal and is given by:- B x  y The field gradient, K is defined as

M. LindroosNUFACT06 School This example is a Focusing Quadrupole (QF) It focuses the beam horizontally and defocuses vertically Rotating the poles by 90 degrees we get a Defocusing Quadrupole (QD) Force on a particle FyFy FxFx

M. LindroosNUFACT06 School FODO Cell We will study the FODO cell in detail during the tutorial!

M. LindroosNUFACT06 School As the particles move around the accelerator or storage ring, whenever their divergence (angle) causes them to stray too far from the central trajectory the quadrupoles focus then back towards the central trajectory. This is rather like a ball rolling around a circular gutter.

M. LindroosNUFACT06 School We characterize the position of the particle in this transverse motion by two things:- Position or displacement from central path, and angle with respect to central path. x = displacement x’ = angle = dx/ds This example is for a constant restoring force

M. LindroosNUFACT06 School These transverse oscillations are called Betatron Oscillations, and they exist in both horizontal and vertical planes. The number of such oscillations/turn is Q x or Q y. (Betatron Tune) (Hill’s Equation) describes this motion If the restoring force (K) is constant in “s” then this is just SHM Remember “s” is just longitudinal displacement around the ring Hill’s equation

M. LindroosNUFACT06 School What happens to the motion of the ball in the circular gutter if we allow the shape of the gutter to vary? The phase advance and the amplitude modulation of the oscillation are determined by the shape of the gutter. The overall oscillation amplitude will depend on the initial conditions, i.e. how the motion of the ball started. K varies strongly with “s”…. Therefore we need to solve Hill’s equation for K varying as a function of “s”

M. LindroosNUFACT06 School To solve it, try:  and  0 are constants, which depend on the initial conditions.  (s) = the amplitude modulation due to the changing focusing strength.  (s) = the phase advance, which also depends on focusing strength. Hill’s equation

M. LindroosNUFACT06 School This will give us: If we plot x.v. x’ as  goes from 0 to 2  we get an ellipse, which is called a phase space ellipse x’ x The area of this ellipse is  NB This area does not depend on  or 

M. LindroosNUFACT06 School x’ x x As we move around the machine the shape of this ellipse will change as  changes under the influence of the quadrupoles However the area of the ellipse (  ) will not change  is called the transverse emittance and is determined by the initial beam conditions

M. LindroosNUFACT06 School x’ x x The projection of this ellipse onto the “x” axis gives the physical transverse beam size Therefore the variation of  (s) around the ring will tell us how the transverse beam size will vary

M. LindroosNUFACT06 School To be rigorous we should define the emittance slightly differently. Observe all the particles at single position on one turn and measure both their position and angle A large number of points on our phase space plot, each corresponding to a pair of x,x’ values for each particle. The emittance is the area of the ellipse which contains all (or certain percentage) of the points or particles beam x’ x emittance

M. LindroosNUFACT06 School This conservation of emittance is an illustration of Liouville’s Theorem. Liouville’s theorem states that if x is the transverse position and p x is the transverse mometum, then for a group of particles:- Transverse velocity NB  =v/c,  =m/m 0 constant emittance   is the normalised emittance and it is conserved even during longitudinal acceleration e is only conserved if there is no longitudinal acceleration Lorenz factors!

M. LindroosNUFACT06 School Matrix formalism Represent the particles transverse position and angle by a column matrix. As we move around the ring will vary under the influence of the dipoles, quadrupoles and empty (drift) spaces. Express this modification in terms of a TRANSPORT MATRIX (M). If we know x 1 and x 1 ’ at some point s 1, After the next element in the accelerator ring at s 2 :-

M. LindroosNUFACT06 School Drift space - No magnetic fields, length = L x 2 = x 1 + L.x 1 ’ L x1’x1’ x1x1

M. LindroosNUFACT06 School Remember B y = K.x and the deflection due to the magnetic field is (Provided L is small) x2’x2’ x1x1 x2x2 x1’x1’ deflection Quadrupole of length, L

M. LindroosNUFACT06 School Define focal length of the quadrupole as f = Define f as positive for a focusing effect then:-

M. LindroosNUFACT06 School Multiply together our drift space and our quadrupole matrices to form Transport Matrices, to describe larger sections of our ring These matrices will move our particles from one point (x(s 1 ),x’(s 1 )) on our phase space plot to another (x(s 2 ),x’(s 2 )) The elements of this matrix are fixed by the elements through which the particles pass from s 1 to s 2. However we can also express (x,x’) as solutions to Hill’s equation:-

M. LindroosNUFACT06 School Substitute for x(s 1 ), x(s 1 )’, x(s 2 ) and x(s 2 )’ into this matrix equation. E.g:- Assume that our transport matrix describes a complete turn around the machine Therefore And  = the change in betatron phase over a complete turn

M. LindroosNUFACT06 School These special functions are called TWISS PARAMETERS Remember  is the total betatron phase advance over one complete turn. Now our transport matrix is:- Number of betatron oscillations/turn

M. LindroosNUFACT06 School It is also interesting to note that  (s) and Q or  are related Where  =  over a complete turn But Over one complete turn Increasing the focusing strength decreases the size of the beam envelope (  ) and increases Q and vice versa.

M. LindroosNUFACT06 School What happens if we change the focusing strength slightly? Tune correction This matrix relates the change in the tune to the change in strength of the quadrupoles. We can invert this matrix to calculate change in quadrupole field needed for a given change in tune