Instruction Set Architectures

Slides:



Advertisements
Similar presentations
Introduction to Machine/Assembler Language Noah Mendelsohn Tufts University Web:
Advertisements

Machine/Assembler Language Putting It All Together Noah Mendelsohn Tufts University Web:
Machine Programming I: Basics
Machine-Level Programming I: Basics
Binghamton University CS-220 Spring 2015 Binghamton University CS-220 Spring 2015 x86 Assembler.
University of Washington Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers,
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-243: Introduction to Computer Systems 4 th Lecture, Sep. 2, 2010 Instructors: Randy Bryant.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Tue. May 27, 2015 Instructors: Nathaniel.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
1 ICS 51 Introductory Computer Organization Fall 2006 updated: Oct. 2, 2006.
Machine-Level Programming I: Introduction Apr. 10, 2006 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction Apr. 14, 2008 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Sep. 11, 2012 Instructors: Dave O’Hallaron,
1 Machine-Level Programming I: Basics Computer Systems Organization Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 14, 2013 These slides are from website which accompanies the.
MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Jan 28, 2014 Instructors: Seth Copen.
1 Machine-Level Programming I: Basics Comp 21000: Introduction to Computer Organization & Systems Spring 2015 Instructor: John Barr * Modified slides from.
Lee CSCE 312 TAMU 1 Machine-Level Programming I: Basics Instructor: Dr. Hyunyoung Lee Based on slides provided by: Randy Bryant and Dave O’Hallaron.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics Sep. 15, 2015.
INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING
University of Washington Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
University of Washington Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
Carnegie Mellon 1 Machine-Level Programming I: Basics Slides based on from those of Bryant and O’Hallaron.
Lec 4Systems Architecture1 Systems Architecture Lecture 4: Compilers, Assemblers, Linkers & Loaders Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan.
University of Washington Basics of Machine Programming The Hardware/Software Interface CSE351 Winter 2013.
1 COMP 2130 Introduction to Computer Systems Computing Science Thompson Rivers University Ref.: Carnegie Mellon, CSPP, Intel, AMD.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Chapter 2 Parts of a Computer System. 2.1 PC Hardware: Memory.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 21, 2013 These slides are from website which accompanies the.
University of Amsterdam Computer Systems – the instruction set architecture Arnoud Visser 1 Computer Systems The instruction set architecture.
University of Washington Today Lab1, how is it going?  Now due on Sunday HW 1 out! (Integer, FP, …) Luis out of town Monday (no class)  Spend the time.
1 Machine-Level Programming I: Basics Comp 21000: Introduction to Computer Organization & Systems Spring 2015 Instructor: John Barr * Modified slides from.
Microprocessors CSE- 341 Dr. Jia Uddin Assistant Professor, CSE, BRAC University Dr. Jia Uddin, CSE, BRAC University.
Machine-Level Programming I: Introduction Jan. 30, 2001 Topics Assembly Programmer’s Execution Model Accessing Information –Registers –Memory Arithmetic.
Spring 2016Assembly Review Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
Spring 2016Machine Code & C Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
1 Binghamton University Machine-Level Programming I: Basics CS220: Computer Systems II.
Machine-Level Programming I: Basics
X86 Assembly - Data.
Instruction Set Architecture
Machine-Level Programming I:
Machine-Level Programming I:
Machine-Level Programming I: Basics
Homework Reading Lab with your assigned section starts next week
Credits and Disclaimers
IA32 Processors Evolutionary Design
Roadmap C: Java: Assembly language: OS: Machine code: Computer system:
Homework Reading Continue work on mp1
Machine-Level Programming 1 Introduction
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Authors: Randal E. Bryant and David R. O’Hallaron
Machine-Level Programming I: Introduction Feb. 1, 2000
Machine-Level Programming I: Introduction
X86 Assembly - Data.
Machine-Level Programming: Introduction
Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan
Machine-Level Programming II: Basics Comp 21000: Introduction to Computer Organization & Systems Instructor: John Barr * Modified slides from the book.
Machine-Level Programming I: Basics
Machine-Level Programming I: Basics Comp 21000: Introduction to Computer Organization & Systems Instructor: John Barr * Modified slides from the book.
Machine-Level Programming I:
Machine-Level Programming I:
Machine-Level Programming I: Basics Comp 21000: Introduction to Computer Organization & Systems Instructor: John Barr * Modified slides from the book.
The von Neumann Machine
Credits and Disclaimers
Machine-Level Programming I: Introduction Sept. 10, 2002
Presentation transcript:

Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers, operands, move instructions

What should the HW/SW interface contain?

The General ISA Memory Instructions CPU PC Data Registers ...

General ISA Design Decisions Instructions What instructions are available? What do they do? How are then encoded? Registers How many registers are there? How wide are they? Memory How do you specify a memory location?

HW/SW Interface: Code / Compile / Run Times Code Time Compile Time Run Time .exe File User Program in C Hardware C Compiler Assembler What makes programs run fast?

Executing Programs Fast! The time required to execute a program depends on: The program (as written in C, for instance) The compiler: what set of assembler instructions it translates the C program into The ISA: what set of instructions it made available to the compiler The hardware implementation: how much time it takes to execute an instruction There is a complicated interaction among these

Intel x86 Processors Totally dominate the server/laptop market Evolutionary design Backwards compatible up until 8086, introduced in 1978 Added more features as time goes on Complex instruction set computer (CISC) Many different instructions with many different formats But, only small subset encountered with Linux programs Hard to match performance of Reduced Instruction Set Computers (RISC) But, Intel has done just that!

Intel x86 Evolution: Milestones Name Date Transistors MHz 8086 1978 29K 5-10 First 16-bit processor. Basis for IBM PC & DOS 1MB address space 386 1985 275K 16-33 First 32 bit processor , referred to as IA32 Added “flat addressing” Capable of running Unix 32-bit Linux/gcc uses no instructions introduced in later models Pentium 4F 2005 230M 2800-3800 First 64-bit processor Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of “Core” line

Intel x86 Processors, contd. Machine Evolution 486 1989 1.9M Pentium 1993 3.1M Pentium/MMX 1997 4.5M PentiumPro 1995 6.5M Pentium III 1999 8.2M Pentium 4 2001 42M Core 2 Duo 2006 291M Added Features Instructions to support multimedia operations Parallel operations on 1, 2, and 4-byte data, both integer & FP Instructions to enable more efficient conditional operations Linux/GCC Evolution Very limited impact on performance --- mostly came from HW.

x86 Clones: Advanced Micro Devices (AMD) Historically AMD has followed just behind Intel A little bit slower, a lot cheaper Then Recruited top circuit designers from Digital Equipment and other downward trending companies Built Opteron: tough competitor to Pentium 4 Developed x86-64, their own extension to 64 bits Recently Intel much quicker with dual core design Intel currently far ahead in performance em64t backwards compatible to x86-64

Intel’s 64-Bit Intel Attempted Radical Shift from IA32 to IA64 Totally different architecture (Itanium) Executes IA32 code only as legacy Performance disappointing AMD Stepped in with Evolutionary Solution x86-64 (now called “AMD64”) Intel Felt Obligated to Focus on IA64 Hard to admit mistake or that AMD is better 2004: Intel Announces EM64T extension to IA32 Extended Memory 64-bit Technology Almost identical to x86-64! Meanwhile: EM64t well introduced, however, still often not used by OS, programs

Our Coverage in 351 IA32 x86-64/EM64T The traditional x86 The emerging standard – we’ll just touch on its major additions

Definitions Architecture: (also instruction set architecture or ISA) The parts of a processor design that one needs to understand to write assembly code (“what is directly visible to SW”) Microarchitecture: Implementation of the architecture Is cache size “architecture”? How about core frequency? And number of registers?

Assembly Programmer’s View Memory CPU Addresses Registers Object Code Program Data OS Data PC Data Condition Codes Instructions Programmer-Visible State PC: Program counter Address of next instruction Called “EIP” (IA32) or “RIP” (x86-64) Register file Heavily used program data Condition codes Store status information about most recent arithmetic operation Used for conditional branching Stack Memory Byte addressable array Code, user data, (some) OS data Includes stack used to support procedures (we’ll come back to that)

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm program (p1.s p2.s) Assembler (gcc or as) binary Object program (p1.o p2.o) Static libraries (.a) Linker (gcc or ld) binary Executable program (p)

Compiling Into Assembly C Code Generated IA32 Assembly int sum(int x, int y) { int t = x+y; return t; } sum: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax addl 8(%ebp),%eax movl %ebp,%esp popl %ebp ret Obtain with command gcc -O -S code.c Produces file code.s

Three Kinds of Instructions Perform arithmetic function on register or memory data Transfer data between memory and register Load data from memory into register Store register data into memory Transfer control (control flow) Unconditional jumps to/from procedures Conditional branches

Assembly Characteristics: Data Types “Integer” data of 1, 2, or 4 bytes Data values Addresses (untyped pointers) Floating point data of 4, 8, or 10 bytes No aggregate types such as arrays or structures Just contiguously allocated bytes in memory

Object Code Code for sum Assembler Linker Translates .s into .o Binary encoding of each instruction Nearly-complete image of executable code Missing linkages between code in different files Linker Resolves references between files Combines with static run-time libraries E.g., code for malloc, printf Some libraries are dynamically linked Linking occurs when program begins execution 0x401040 <sum>: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x08 0xec 0x5d 0xc3 Total of 13 bytes Each instruction 1, 2, or 3 bytes Starts at address 0x401040

Example C Code Assembly Object Code Add two signed integers Add 2 4-byte integers “Long” words in GCC speak Same instruction whether signed or unsigned Operands: x: Register %eax y: Memory M[%ebp+8] t: Register %eax Return function value in %eax Object Code 3-byte instruction Stored at address 0x401046 int t = x+y; addl 8(%ebp),%eax Similar to expression: x += y More precisely: int eax; int *ebp; eax += ebp[2] 0x401046: 03 45 08

Disassembling Object Code Disassembled 00401040 <_sum>: 0: 55 push %ebp 1: 89 e5 mov %esp,%ebp 3: 8b 45 0c mov 0xc(%ebp),%eax 6: 03 45 08 add 0x8(%ebp),%eax 9: 89 ec mov %ebp,%esp b: 5d pop %ebp c: c3 ret d: 8d 76 00 lea 0x0(%esi),%esi Disassembler objdump -d p Useful tool for examining object code Analyzes bit pattern of series of instructions Produces approximate rendition of assembly code Can be run on either a.out (complete executable) or .o file

Alternate Disassembly Disassembled Object 0x401040 <sum>: push %ebp 0x401041 <sum+1>: mov %esp,%ebp 0x401043 <sum+3>: mov 0xc(%ebp),%eax 0x401046 <sum+6>: add 0x8(%ebp),%eax 0x401049 <sum+9>: mov %ebp,%esp 0x40104b <sum+11>: pop %ebp 0x40104c <sum+12>: ret 0x40104d <sum+13>: lea 0x0(%esi),%esi 0x401040: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x08 0xec 0x5d 0xc3 Within gdb Debugger gdb p disassemble sum Disassemble procedure x/13b sum Examine the 13 bytes starting at sum

What Can be Disassembled? % objdump -d WINWORD.EXE WINWORD.EXE: file format pei-i386 No symbols in "WINWORD.EXE". Disassembly of section .text: 30001000 <.text>: 30001000: 55 push %ebp 30001001: 8b ec mov %esp,%ebp 30001003: 6a ff push $0xffffffff 30001005: 68 90 10 00 30 push $0x30001090 3000100a: 68 91 dc 4c 30 push $0x304cdc91 Anything that can be interpreted as executable code Disassembler examines bytes and reconstructs assembly source

Integer Registers (IA32) %eax %ecx %edx %ebx %esi %edi %esp %ebp general purpose

Integer Registers (IA32) Origin (mostly obsolete) %eax %ecx %edx %ebx %esi %edi %esp %ebp %ax %ah %al accumulate %cx %ch %cl counter %dx %dh %dl data general purpose %bx %bh %bl base source index %si destination index %di stack pointer %sp base pointer %bp 16-bit virtual registers (backwards compatibility)

x86-64 Integer Registers %rax %r8 %rbx %r9 %rcx %r10 %rdx %r11 %rsi %eax %r8d %rbx %r9 %ebx %r9d %rcx %r10 %ecx %r10d %rdx %r11 %edx %r11d %rsi %r12 %esi %r12d %rdi %r13 %edi %r13d %rsp %r14 %esp %r14d %rbp %r15 %ebp %r15d Twice the number of registers Accessible as 8, 16, 32, 64 bits

x86-64 Integer Registers: Usage Conventions %rax %r8 Return value Argument #5 %rbx %r9 Callee saved Argument #6 %rcx %r10 Argument #4 Caller saved %rdx %r11 Argument #3 Caller Saved %rsi %r12 Argument #2 Callee saved %rdi %r13 Argument #1 Callee saved %rsp %r14 Stack pointer Callee saved %rbp %r15 Callee saved Callee saved