Meson Production at 8 GeV for IDS120h X. Ding, UCLA Target Studies, Dec. 27, 2011.

Slides:



Advertisements
Similar presentations
Comparison of Particle Production between MARS and FLUKA (Update) X. Ding, UCLA Target Studies Aug. 8, /8/13.
Advertisements

IDS120j WITH/WITHOUT GAPS SH#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS Nicholas Souchlas, PBL (3/14/2012) 1.
Magnetic Configuration of the Muon Collider/ Neutrino Factory Target System Hisham Kamal Sayed, *1 H.G Kirk, 1 K.T. McDonald 2 1 Brookhaven National Laboratory,
6/30/20091 Meson Production with Different Directional Incident Proton Beam X. Ding, D. Cline, UCLA H. Kirk, J. S. Berg, BNL.
Meson Production Comparison between Hg and Ga at 8 GeV X. Ding, UCLA Target Studies, Oct. 04, 2011.
Meson Production Comparison between HG and GA at 8 GeV (Update) X. Ding, UCLA Target Studies, Oct. 18, 2011.
Particle Production of a Carbon/Mercury Target System for the Intensity Frontier X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Spring.
Comparison of Power Depositions Xiaoping Ding UCLA Target Studies Jul. 13, 2010.
Operated by Brookhaven Science Associates for the U.S. Department of Energy A Pion Production and Capture System for a 4 MW Target Station X. Ding, D.
Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting 2008 University of Warwick, Physics Department 3-4 April.
Energy Deposition of 4-MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Meeting, Feb. 9, 2010.
Harold G. Kirk Brookhaven National Laboratory High-Power Targets H.G. Kirk Applications of High-Intensity Proton Accelerators FNAL October 20, 2009.
Proton Position Tracking X. Ding, D. Cline UCLA H. Kirk, J. S. Berg, BNL Phone Meeting on Aug. 25, 2009.
Harold G. Kirk Brookhaven National Laboratory Meson Production Efficiencies IDS Target Meeting CERN December 17, 2008.
1 Meson Production Simulations X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL N u F a c t th International Workshop on Neutrino Factories, Superbeams.
Above: Energy deposition in the superconducting magnet and the tungsten-carbide shield inside them. Approximately 2.4 MW must be dissipated in the shield.
Optimization of Target Parameters for a Tungsten Target (Half Density) at 8GeV X. Ding Target Studies Nov. 2, 2010.
Energy Deposition of 4MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Mar. 9, 2010 (Update of talk on Feb. 9, 2010)
Harold G. Kirk Brookhaven National Laboratory Target System Update IDS-NF Plenary Meeting Arlington, VA October 18, 2011.
1 Muon Yield Comparisons for Different ICOOL Versions and Lattices X. Ding Front End, Nov. 23, 2010.
Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009.
1Managed by UT-Battelle for the U.S. Department of Energy NMFCC Friday Meeting 10 Apr 2009 Neutrino Factory Nozzle Layouts V.B. Graves NFMCC Friday Meeting.
IDS-NF Target Studies H. Kirk (BNL) July 8, 2009.
1 Comparison of Power Depositions X. Ding, D. B. Cline, UCLA H. Kirk, J. S. Berg, BNL Collaboration Meeting July 2, 2010.
Proton Position Tracking X. Ding, UCLA Aug. 11, 2009.
Comparison of Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Jun. 29, 2010.
1 3D Simulations for the Elliptic Jet W. Bo (Aug 12, 2009) Parameters: Length = 8cm Elliptic jet: Major radius = 0.8cm, Minor radius = 0.3cm Striganov’s.
Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Apr. 20, 2010.
Above: Power deposition in the superconducting magnets and the tungsten-carbide + water shield inside them, according to a FLUKA simulation Approximately.
Above: On-axis field profiles of resistive, superconducting and all magnets, and bore-tube radius r = 7.5 (B/20T) −½ cm. Above: Hoop strain ε θ in resistive.
Harold G. Kirk Brookhaven National Laboratory Meson Production Calculations 1 st Princeton/Oxford High-Power Targets Workshop Oxford May 1-2, 2008.
Operated by Brookhaven Science Associates for the U.S. Department of Energy Optimized Parameters for a Mercury Jet Target X. Ding, D. Cline, UCLA, Los.
IDS120h POWER DEPOSITION AND Hg POOL STUDIES Nicholas Souchlas (7/26/2011) 1.
Target and Absorbers L2 Manager: K McDonald, Princeton U March xx, 2013 Presenter’s Name | DOE Mini-Review of MAP (FNAL, March 4-6, 2013)1 Mission Target:
Meson Productions for Target System with GA/HG Jet and IDS120h Configuration X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL Muon Accelerator.
Shifting the Position of Focal Point of Proton Beam Relative to Intersection Point with Fixed Emittance for IDS120h Configuration X. Ding, UCLA Target.
Harold G. Kirk Brookhaven National Laboratory Target Considerations for Nufact and Superbeams ISS Meeting RAL April 26, 2006.
DEPOSITED POWER STUDIES FOR THE MC/NF TARGET STATION. Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012) 1 DEPOSITED POWER STUDIES FOR THE MC/NF TARGET.
1 Energy Deposition of 4MW Beam Power in a Mercury Jet Target X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL The International Design Study for the.
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS. BP#1(STST/W), SH#1, BeWindow,SC#8.
Particle Production at 3 GeV (update) X. Ding, UCLA Target Studies Sept. 23, /23/13.
Honors Geometry. Find the angle formed by the hands of a clock at 11:20. A. 160 B. 120 C. 140 D. 90
J. Pasternak First Ideas on the Design of the Beam Transport and the Final Focus for the NF Target J. Pasternak, Imperial College London / RAL STFC ,
Proton Delivery to Target Keith Gollwitzer Accelerator Division Fermilab MAP 2012 Winter Meeting March 7, 2012.
Gallium as a Possible Target Material for a Muon Collider or Neutrino Factory X. Ding, D. Cline, UCLA, Los Angeles, CA 90095, USA J.S. Berg, H.G. Kirk,
Studies on pion/muon capture at MOMENT Nikos Vassilopoulos IHEP, CAS August 11, 2015.
Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies April 3, /3/14.
July 2005A.Fabich, CERN AB-ATB1 MERIT (ntof11) experiment: Diagnostics A.Fabich CERN AB-ATB July 2005.
Beam Dump for Carbon Target with IDS120h Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies Jan. 24, /24/14.
Particle Production with Carbon Target and IDS120j Configuration at 3 GeV (update) X. Ding, UCLA Target Studies Nov. 14, /14/13.
Kinetic Energy Spectra of pi +, pi -, mu +, mu - and sum of all from the 20to4T5m Configuration X. Ding Front End Meeting June 23,
Meson Production of Carbon Target at 3 GeV X. Ding, UCLA Target Studies 17/18/13.
Carbon Target Design and Optimization for an Intense Muon Source X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Winter Collaboration.
Two photon process veto efficiency 4-Aug-2006 A.Miyamoto Preliminary status report.
Meson Production at Low Proton Beam Energy (Update) X. Ding, UCLA Target Studies May 9, /9/113.
IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH STST SHIELDING VESSELS. Hg vs. Ga DEPOSITED POWER DISTRIBUTION. (using Ding's optimized parameters)
1 February 07, 2008 Simulation Status of Mercury Jet Target HeeJin Park.
Optimized Target Parameters and Meson Production by IDS120h with Focused Gaussian Beam and Fixed Emittance (Update) X. Ding, UCLA AAG June 27, /27/12.
Harold G. Kirk Brookhaven National Laboratory Muon Production and Capture for a Neutrino Factory European Strategy for Future Neutrino Physics CERN October.
Simulation / reconstruction with GEMs at DAC A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna,
10 mm is the same as... 1 cm. 20 mm is the same as... 2 cm.
IDS120h: PROTON P0-P14 TRAJECTORY FOOTPRINT
X. Ding, UCLA MAP Spring 2014 Meeting May 2014 Fermilab
CNGS Proton Beam: Introduction

Meson Production Efficiencies
Gas cell apertures with dimensions (original)
GLD IR optimization and background study
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
Option 1: Reduced FF Quad Apertures
Presentation transcript:

Meson Production at 8 GeV for IDS120h X. Ding, UCLA Target Studies, Dec. 27, 2011

Configuration of IDS120h

Meson Production Study The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm. 1. IDS120h (Geometry and fieldmap) 2. Target (HG or GA) 3. Beam below the HG/GA jet exactly at z = cm and project beam back to z = -200 cm. 4. Initial target parameters: target radius of 5 mm, beam angle of 67 mrad at z = cm, beam/jet crossing angle of 33 mrad at z = cm.

Optimized Target Parameters at z = cm HG GA Beam radius, mm Crossing angle, mrad Beam angle, mrad Beam radius, mm Crossing angle, mrad Beam angle, mrad Initial st Cycle nd Cycle rd Cycle

Meson Productions at 8 GeV (400,000 events) HGGA Before optimization (Beam radius/beam angle/crossing angle (5mm/67mrad/33mrad) (5mm/67mrad/33mrad) After optimization (Beam radius/beam angle/crossing angle) (4.15mm/120mrad/21.6mr ad) (4.9mm/92mrad/12.2mrad )