Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez.

Slides:



Advertisements
Similar presentations
Preparation to the CMB Planck analysis: contamination due to the polarized galactic emission L. Fauvet, J.F. Macías-Pérez 1.
Advertisements

Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes L. Fauvet, J.F. Macías-Pérez, F.-X. Désert 1.
Planck 2013 results, implications for cosmology
The Ability of Planck to Measure Unresolved Sources Bruce Partridge Haverford College For the Planck Consortium.
Cosmic Microwave Background, Foregrounds and Component Separation What are foregrounds and how to deal with them in CMB data analysis Carlo Baccigalupi,
S-PASS, a new view of the polarized sky Gianni Bernardi SKA SA On behalf of the S-PASS team CMB2013, Okinawa, June th 2013.
S.Mereghetti - Simbol-X: The hard X-ray Universe in focus - Bologna -15/5/20071 Studying the Galactic Ridge Emission with SIMBOL-X Sandro Mereghetti IASF.
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
WMAP observations: Foreground Emission Adric Riedel
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes Chan-Gyung Park, Changbom Park (KIAS), J. Richard Gott.
GHz Measurements of anomalous dust emission Richard Davis, Clive Dickinson, Rod Davies, Anthony Banday Paris.
Cambridge CMB meeting 20 th July 2009 CMB B-modes: Foregrounds Paddy Leahy, Clive Dickinson, Mike Preece, Mike Peel (Manchester)
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
SZE in WMAP Data Jose M. Diego & Bruce Partridge 2010, MNRAS, 402, 1179 La Thuile, March 2012.
SPECTRA OF GALACTIC COMPONENTS OBSERVED BY WMAP R.D.Davies, R.J.Davis Jodrell Bank Observatory C.Dickinson California Institute of Technology A.J.Banday,
Hamburg, 18 September 2008 LOFAR Wokshop1/44 Thermal and non-thermal emission from galaxy clusters: X-ray and LOFAR observations Chiara Ferrari Observatoire.
How much Microwave Emission can we See from Interplanetary Dust? Valeri Dikarev at the Cosmic Structure and Evolution Workshop on September, 24, 2009 in.
WMAP. The Wilkinson Microwave Anisotropy Probe was designed to measure the CMB. –Launched in 2001 –Ended 2010 Microwave antenna includes five frequency.
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Component Separation of Polarized Data Application to PLANCK Jonathan Aumont J-F. Macías-Pérez, M. Tristram, D. Santos
Latest results on Anomalous Galactic Microwave Emission from the Cosmosomas Experiment José Alberto Rubiño Martín (IAC-Tenerife) Orsay, October 27 th,
T.G.Arshakian MPI für Radioastronomie (Bonn) Exploring the weak magnetic fields with LOFAR.
N. Ponthieu Polarization workshop, IAS, Orsay, 09/15/ N. Ponthieu (IAS) The conquest of sky polarization The upper limits era First detections Prospects.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
EMerlin lenses and starbursts from the widest-area Herschel and SCUBA-2 surveys Stephen Serjeant, July 17th 2007.
SLAC, May 12th, 2004J.L. Puget PLANCK J.L. Puget Institut d'Astrophysique Spatiale Orsay.
Dust polarization expectations The PILOT experiment J.-Ph. Bernard CESR Toulouse Dust polarization at long wavelengths J.-Ph. Bernard, Orsay, Bpol meeting.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
ATLASGAL ATLASGAL APEX Telescope Large Area Survey of the Galaxy F. Schuller, K. Menten, P. Schilke, et al. Max Planck Institut für Radioastronomie.
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Science with a Rover-based Low-frequency Dipole Array A multi-configuration rover-borne dipole array for Low-frequency RadioAstronomy from the Moon Ettore.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
PHY418 PARTICLE ASTROPHYSICS Radio Emission 1. Radio emission and particle astrophysics 2 Why are the.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Diffuse Galactic components in the Gould Belt System Richard Davis 8/7/20131EWASS Torku Finland.
Anomalies of low multipoles of WMAP
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
Improved Model of Spinning Dust Emission and Implications Thiem Hoang (UW-Madison) in collaboration with Alex Lazarian (UW-Madison), Bruce T. Draine (Princeton)
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Array for Microwave Background Anisotropy AMiBA SZ Science AMiBA Team NTU Physics Figure 4. Simulated AMiBA deep surveys of a 1deg 2 field (no primary.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Planck Report on the status of the mission Carlo Baccigalupi, SISSA.
2-Day IDAPP meeting INAF-IASF Bologna Student: Pietro Procopio Dr. Carlo Burigana University of Ferrara Dr. Nazzareno Mandolesi Internal tutor: External.
CWRU, February 2009 Can the WMAP haze really be a signature of annihilating neutralino dark matter? Daniel Cumberbatch (CWRU), Joe Zuntz (Oxford), Joe.
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
Fermi LAT Discovery of Gamma-rays from the Giant Radio Lobes of Centaurus A C.C. Teddy Cheung (NRC/NRL) Lukasz Stawarz (ISAS/JAXA) Yasushi Fukazawa (Hiroshima)
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
DISCOVERY A Unique Center with Unique Opportunities Direct and unique access to data from the most powerful experiments available today : –The Large Hadron.
CMB physics Zong-Kuan Guo 《现代宇宙学》
Topics on Dark Matter Annihilation
Point source contamination in Galaxy cluster
Towards the first detection using SPT polarisation
Dark Matter in Galactic Gamma Rays
Cosmological constraints from tSZ-X cross-correlation
Galactic Magnetism with SKA: Primordial Origin of BSS, ASS, Ring &Vertical Fields Y. Sofue1,2, M. Machida3, T. Kudoh3, H. Nakanishi1 (1. Kagoshima U.,
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
LFI systematics and impact on science
Presentation transcript:

Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez

2 The CMB from WMAP to Planck Polarized foregrounds 3D model of the galaxy: optimization Contamination of the CMB data L.Fauvet, Bielefeld workshop, 09/24/2009

3 The Planck satellite mission ESA mission launched the may 14th instruments : LFI : 33, 44 and 70 GHz HFI : 100, 143, 217, 353, 545 and 857 GHz sensitivity: ∆T ≈ 2 μK angular resolution : 5 arcmin measurement of the CMB in temperature and polarization measurement of foreground emissions L.Fauvet, Bielefeld workshop, 09/24/2009

4 The CMB from WMAP to Planck EE TT L.Fauvet, Bielefeld workshop, 09/24/2009 [Planck Blue book]

5 The CMB from WMAP to Planck [Hinshaw et al, 2009] L.Fauvet, Bielefeld workshop, 09/24/2009 I QU

6 Foregrounds for the CMB observation instrumental noise dust synchrotron free-free galaxies SZ (cinetic) SZ (thermal) CMB synchrotron dominates at ν < 70 GHz thermal dust dominates at ν > 70 GHz L.Fauvet, Bielefeld workshop, 09/24/2009

7 Galactic polarized emissions dust emission B ω helical electron synchrotron emission dust grain star light polarization synchrotron emission (408 MHz) [Haslam et al, 1982] thermal dust emission (353 GHz) [Finkbeiner et al, 1999] L.Fauvet, Bielefeld workshop, 09/24/2009

8 physical model of polarized foreground emissions depends on: the shape of the galactic magnetic field : regular component : BSS or ASS free parameter : pitch angle [Han et al, 2006] non regular component [Han et al, 2004] free parameter: A turb halo component, free parameter : A halo the distribution of relativistic electrons, free parameter: h r, CRE lo [Page et al, 2007; Sun et al, 2008] the distribution of dust grains [Page et al, 2007; Paladini et al, 2007] 3D model of the Galaxy [Han et al, 2006] L.Fauvet, Bielefeld workshop, 23/06/2009

9 integrating along the line of sight polarization fraction related to the cosmic ray energy dimension slope s : p s = 0.75 idem for thermal dust ◦ thermal dust emission p d : the polarization fraction = 0.1 [Ponthieu et al, 2005] with: ◦ synchrotron emission 3D model of the Galaxy extrapolation at various μ : β s extrapolation at various μ : β d L.Fauvet, Bielefeld workshop, 09/24/2009

10 Optimization of the model comparison with preexisting data ◦ 408 MHz all-sky continuum survey [Haslam et al, 1982] ◦ WMAP 5 years data (NASA satellite currently in fly) 5 polarized channels between 33 and 94 GHz [Hinshaw et al,2009] optimisation of the synchrotron emission model ◦ ARCHEOPS (ballon experiment, flu in 2003) 1 polarized channel at 353 GHz [Benoît et al, 2003] optimisation of the thermal dust emission model L.Fauvet, Bielefeld workshop, 09/24/2009

11 Galactic profiles : I Haslam data, BSS field for various A turb L.Fauvet, Bielefeld workshop, 09/24/2009

12 Galactic profiles : WMAP 5 years data + synchrotron emission (from green to red) (BSS model of magnetic field and exponnential distribution of relativistic electrons) 23 GHz QU L.Fauvet, Bielefeld workshop, 09/24/2009

13 Galactic profiles : 353 GHz galactic profiles for various values of the latitudes the ARCHEOPS data and our model of thermal dust emission (BSS model of magnetic field and exponnential distribution of dust grains) L.Fauvet, Bielefeld workshop, 09/24/2009 UQI

14 for the synchrotron emission model A turb < 0.25 B reg p = - 20 ± 10 deg h r < 15 kpc β s = -3.3 ± 0.1 Best fit parameters for the dust thermal emission A turb < 0.25 B reg p = - 20 ± 10 deg L.Fauvet, Bielefeld workshop, 09/24/2009 A turb p(deg) A turb BSS regular field

15 Pixel to pixel comparison I WMAP Q WMAP U WMAP I SYNC Q SYNC U SYNC 23 GHz L.Fauvet, Bielefeld workshop, 09/24/2009

16 Power spectrum WMAP 3 years data (black) |b|> 0 deg synchrotron emission model for differents value of the pitch angle (green (-70 deg) to red (10 deg)). 23 GHz TTEEBB TETBEB L.Fauvet, Bielefeld workshop, 09/24/2009

17 Pixel to pixel comparison I ARCH Q ARCH U ARCH I DUST Q DUST U DUST 353 GHz L.Fauvet, Bielefeld workshop, 09/24/2009

18 Power spectrum ARCHEOPS data (black) |b|>0 deg thermal dust emission model (red) 353 GHz EEBB TETBEB L.Fauvet, Bielefeld workshop, 09/24/2009 TT

19 Contamination on the CMB black: model of galactic emission for |b| > 15 deg red : simulation of CMB TETBEB EEBBTT 143 GHz L.Fauvet, Bielefeld workshop, 09/24/2009

20 Conclusion the model is a physical model of the galaxy comparison to the main data does exist no details but global features are well reproduced used into the separation component models efficient to simulate the Planck data and estimate the contamination of the CMB L.Fauvet, Bielefeld workshop, 09/24/2009