UHE Neutrino Astronomy Shigeru Yoshida Chiba University RESCEU 2003.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Neutrino Astroparticle Physics
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
GZK ’s and their Detection with IceCube Interactions Interactions Results Results Implications for the IceCube Implications for the IceCube Summary Summary.
A High Energy Neutrino Astronomy from infancy to maturity LAUNCH Meeting Heidelberg Christian Spiering DESY A.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
Recent Results Lutz Köpke University of Mainz, Germany July 31, 2003
Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford.
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Recent Results Lutz Köpke University of Mainz, Germany July 31, 2003
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Propagation of UHE in Earth Interactions Interactions First Results First Results Implications for the IceCube Implications for the IceCube Future Plan.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
GZK EHE detection What is the GZK mechanism? EHE  Propagation in the Earth Expected intensities at the IceCube depth Atmospheric  – background Event.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
IAU Sydney Per Olof Hulth Particle Astronomy from Antarctica Per Olof Hulth Stockholm University.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
First-generation neutrino telescopes. neutrino muon or tau Cerenkov light cone Detector interaction Infrequently, a cosmic neutrino is captured in the.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
High Energy Neutrino Astronomy Christian Spiering DESY Zeuthen TAUP 2001.
con i neutrini1 Showering Neutrino Astronomies at Horizons.
Particle Physics: Status and Perspectives Part 7: Neutrinos Manfred Jeitler.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
The ANTARES Neutrino Telescope and its Dark Matter Capabilities
PHY418 Particle Astrophysics
Kirsten Münich University of Dortmund, Germany Analysis strategies and recent results from AMANDA-II.
High-energy gammas from the giant flare of SGR of December 2004 in AMANDA Juande D. Zornoza on behalf of the IceCube.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Alexander Kappes Extra-Galactic sources workshop Jan. 2009, Heidelberg Gamma ray burst detection with IceCube.
Alexander Kappes (E. Strahler, P. Roth) ECAP, Universität Erlangen-Nürnberg for the IceCube Collaboration 2009 Int. Cosmic Ray Conf., Łódź,
Search for a Diffuse Flux of TeV to PeV Muon Neutrinos with AMANDA-II Detecting Neutrinos with AMANDA / IceCube Backgrounds for the Diffuse Analysis Why.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Imaging the Neutrino Universe with AMANDA and IceCube
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
08/27/04 Strategies for the search for prompt muons in the downgoing
Brennan Hughey for the IceCube Collaboration
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
MC studies of the KM3NeT physics performance Rezo Shanidze
Brennan Hughey for the IceCube Collaboration
Presentation transcript:

UHE Neutrino Astronomy Shigeru Yoshida Chiba University RESCEU 2003

Outline UHE emission – What it can tell Theoretical Bound of fluxes Extremely High-Energy generation Cosmic detection – the current status IceCube : reachable to EHE universe RESCEU 2003

TeV sources! cosmic rays //////////////////////////////////

Physics motivation  origin and acceleration of cosmic rays  understand cosmic cataclysms  find new kind of objects?  neutrino properties ( , cross sections..)  dark matter (neutralino annihilation) tests of relativitiy.... search for big bang relics... effects of extra dimension etc....

Active Galaxies: Jets VLA image of Cygnus A 20 TeV gamma rays Higher energies obscured by IR light

radiation enveloping black hole

 You cannot expect too many ! p  (p,n)  22 e e  TeV/EGRET observations !! Cosmic Ray observations! Synchrotron cooling You cannot expect too high energies

Theoretical bounds atmospheric  W&B MPR DUMAND test string FREJUS NT-200 MACRO opaque for neutrons Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999)  derived from known limits on extragalactic protons +  -ray flux neutrons can escape Suppressed by Synchrotron Cooling

EHE(Extremely HE) Synchrotron cooling of  … Production sites with low B Intergalactic space!! GZK Production Z-burst Topological Defects/Super heavy Massive particles

GZK Neutrino Production K 411 photons / cm x cm 2 γ p n p π + μ + ν e + ν γ E = eV E 0.8 x eV ~ Conventional Mechanism of EHE neutrinos!!

RESCEU 2003 Yoshida and Teshima 1993 Yoshida, Dai, Jui, Sommers 1997 GZK fluxes

RESCEU 2003 γ spectral injection index m activity evolution index z max z of formation of sources Ω M density of matter H o Hubble constant B intergalactic magnetic field η L ρ L /η o ρ o local enhancement E max maximum acceleration energy in source Parameters Orientative order of magnitude [1-3] [3-5] [1-4] [0.2-1] [50-80 Km/s/Mpc] [B≤1nG] [?] [E max > eV] Parameters involved in calculation. Predicted fluxes. (Diego González-Díaz, Ricardo Vázquez, Enrique Zas 2003)

RESCEU 2003 CR and ν fluxes for different models (Diego González-Díaz, Ricardo Vázquez, Enrique Zas 2003)

EHE Constraints by CR/  Deciding factors Source Evolution Extension of source distribution Local source enhancement?

Z-bursts Concept

CRs extending to superEHEs!

Z-burst constraints RESCEU 2003 (Yoshida, Sigl, Lee 1998)

EHE Neutrino Fluxes RESCEU 2003

Cosmic UHE detection Neutrino Telescopes – Antares, AMANDA, IceCube etc. RESCEU 2003

neutrino muon Cherenkov light cone Detector interaction Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrino interacts with an ice nucleus In the crash a muon (or electron, or tau) is produced The muon radiates blue light in its wake Optical sensors capture (and map) the light

Optical Cherenkov Neutrino Telescope Projects NESTOR Pylos, Greece ANTARES La-Seyne-sur-Mer, France BAIKAL Russia DUMAND Hawaii (cancelled 1995) AMANDA, South Pole, Antarctica NEMO Catania, Italy

Demonstrator Line Nov Jun °59 N, 5°17 E Depth 1200 m ANTARES 0.1km 2 Site 42°50 N, 6°10 E Depth 2400 m Existing Cable Marseille-Corsica Marseille Toulon La Seyne sur Mer New Cable (2001) La Seyne-ANTARES ANTARES Deployment Sites ~ 40 deployments and recoveries of test lines for site exploration 0.1 km 2 Detector with 900 Optical Modules, deployment Thetys

ANTARES Layout 12 lines 25 storeys / line 3 PMT / storey ~60-75 m 350 m 100 m 14.5 m Junction box Readout cables 40 km to shore

Laser calibration at the CPPM dark room Optical fibres t1t1 t2t2 t3t3 Optical Splitter Laser Optical beacon Cylinder

Amundsen-Scott Station South Pole Optical module AMANDA II Detector

Detection of e, ,  ~ 5 m Electromagnetic and hadronic cascadesO(km) long muon tracks direction determination by cherenkov light timing  15 m

The highest energy event (~200 TeV) 300 m

Excess of cosmic neutrinos? Not yet... cascades (2000 data) „ AGN“ with E -2 GeV -1 cm -2 s -1 sr -1.. for now use number of hit channels as energy variable... muon neutrinos (1997 B10-data) accepted by PRL cuts determined by MC – blind analyses ! talk HE 2.3-4

 sky subdivided into 300 bins (~7°x7°) below horizon:mostly fake events above horizon: mostly atmospheric ‘s  697 events observed above horizon  3% non-neutrino background for  > 5°  cuts optimized in each declination band PRELIMINARY Point source search in AMANDA II Search for excess events in sky bins for up-going tracks talk HE no clustering observed - no evidence for extraterrestrial neutrinos...

Theoretical bounds and future atmospheric  W&B MPR DUMAND test string FREJUS NT-200 MACRO  NT-200+ AMANDA-II IceCube AMANDA-97 AMANDA-00 opaque for neutrons Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999)  derived from known limits on extragalactic protons +  -ray flux neutrons can escape

IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of all flavors at energies from 10 7 eV (SN) to eV Talks/Poster by H. Miyamoto this evening

IceCube (1km 3 underground observatory) Sensitive to ~ of the WB bound EHE( ~EeV) -- Almost reachable!  GZK, Z-burst, TD... New Physics? Secondary  /  detection

E µ =10 TeV ≈ 90 hitsE µ =6 PeV ≈ 1000 hits How EHE events look like The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.

EHE (EeV or even higher) Neutrino Events Arriving Extremely Horizontally Needs Detailed Estimation Limited Solid Angle Window (  N A ) -1 ~ 600 (  / cm 2 ) -1 (  /2.6g cm -3 ) -1 [km] Involving the interactions generating electromagnetic/hadron cascades NN  X e + e - RESCEU 2003

e e      e/     Weak Incoming Products Weak Cascades Decay Weak Pair/decay Bremss Pair PhotoNucl. Decay Pair Pair Bremss Decay Weak Decay

RESCEU 2003 Tau(Neutrinos) from    Suppression By  decay Muon(Neutrinos) from   Nadir Angle

RESCEU 2003 Upward-goingDownward going!! Atmospheric muon! – a major backgrond But so steep spectrum

1.4 km 1km Downward Upward Ice Rock ν ν ± π γ γ γ ν + e - e 1km + e - e lepton EHE events!

RESCEU 2003 Down-going events dominate… 1400 m 2800 m 11000m UpDown Atmospheric  is attenuated faster…

Flux as a function of energy deposit in km 3 dE/dX~  E  E~  XbE

Flux as a function of energy deposit in km 3 dE/dX~  E  E~  X  E

RESCEU 2003 Intensity of EHE  and  GZK m=4 Z max =4 I  (E>10PeV)I  (E>10PeV) RATE [/yr/ km 2 ] Down Up I  (E>10PeV) Energy Deposit I  (E>10PeV) Energy Deposit Down m=7 Z max =5 Down Atm  [cm -2 sec -1 ]

IceCube EHE Sensitivity 90% C.L. for 10 year observation

Summary UHE fluxes are constrained by  /CR fluxes. A detection beyond this limit would imply a new class of astronomical objects. EHE  fluxes are constrained by EGRET  /UHECR fluxes and by the synchrotron cooling of  ’ s. The loophole to this bound would be the GZK cosmogenic neutrinos with intensity of ~10 -8 GeV /cm 2 sec sr. RESCEU 2003

Summary (Cont ’ d) AMANDA observatory is getting to reach to its sensitivity to the WB bound. The other telescopes in northern hemisphere would reaches the similar sensitivity. IceCube observatory would be sensitive to of the WB bound. The EHE sensitivity is comparable to the GZK neutrinos fluxes: 3x10 -8 GeV /cm 2 sec sr in 10 years observation. RESCEU 2003