Bridge Design Project Using SolidWorks and SolidWorks Simulation to design, test and build structures.

Slides:



Advertisements
Similar presentations
Wooden Bridge Construction
Advertisements

Structural Steel Construction
Appreciation of Loads and Roof Truss Design
PHYSICS 1401 JEFFERY DING ALAN JONES
Stadium Roof Design - S2 : Stadium Roof Design - Emirates Stadium Structural Analysis.
Truss Basics – Overview
TODAY ADD LEGO rubric to end of your lab write-up for LEGO NXT
Introduction to Beam Theory
Bending Moments A bending moment exists in a structural element when an external force is applied to the element so that the element bends (or wishes to.
Bridge Building Notes Physics.
Trusses.
© 2006 Baylor University EGR 1301 Slide 1 Lecture 6 Introduction to Engineering Approximate Running Time - 19 minutes Distance Learning / Online Instructional.
Design of Tension Members
Design of Tension Members
Structures Real World Engineering Ms. Sicola. Live loads vs dead loads Live loads refer to loads that do, or can, change over time. Objects that move.
TRUSS. Definition of a Truss Trusses are framed structures composed of short, straight pieces joined to form a series of triangles which are made of wood.
ENGR 220 Section 13.1~13.2.
Beams – Internal Effects The external load applied to a beam can cause changes in the shape of the beam, it can bend for example. We do not want.
REINFORCED CONCRETE Reinforced concrete is a composite material which utilizes the concrete in resisting compression forces, and steel bars and/or.
LRFD-Steel Design 1.
There are many types of bridges including:
Spaghetti Bridges The Pasta Sensations! Take a look at some designs…….
BSE 2294 Animal Structures and Environment
SHEAR IN BEAMS. SHEAR IN BEAMS Introduction Loads applied to beams produce bending moments, shearing forces, as shown, and in some cases torques. Beams.
Chapter 6 Plate girder.
Bridge Building.
SHEAR AND BENDING MOMENT DIAGRAMS IN HORIZONTAL BEAMS WITH
Bridge Project Problem Definition: Design a Bridge to span a given distance while supporting a maximum load using a minimum materials.
Elevated Bridge Building New York State Coaches Clinic October th 2009 Fishkill, New York.
Bridging the Gap: Building Bridges 101, It Is Time to Get To Work
MESA DAY BRIDGES. MESA BRIDGES Forces at Work Forces in a Bridge Building Better Bridges Rules Testing Procedures Materials Suppliers.
Why did the bridge fall into the Mississippi River?  bridge+collapse&total=206&start=0&num=10&so=0&type=search&plindex=1.
Design and Construction of a Spaghetti Bridge Michael Karweit Department of Chemical Engineering Johns Hopkins University.
Basic Structural Theory. BASIC STRUCTURAL THEORY TECHNICAL STANDARDS BRANCH INTRODUCTION TO BRIDGES TRANSPORTATION Slide 2 Beams Different member types.
Extra Examples.
FOOTINGS. FOOTINGS Introduction Footings are structural elements that transmit column or wall loads to the underlying soil below the structure. Footings.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
STRENGTHS Chapter Intro Dealing with relationship between the external loads applied to an elastic body and the intensity of the internal forces.
Bridges Introduction to design.
ENGR 211 Bridge Design Project
Introduction to Towers. What is a tower? A man-made structure, higher than its diameter, generally used for observation, storage, or electronic transmission.
BEAMS: Beams are structural members that can carry transverse loads which produce bending moments & shear force. Girders: Main load carrying members into.
Beam Design Beams are designed to safely support the design loads.
Building LEGO Robots For FIRST LEGO League By Dean Hystad
COLD FORMED STEEL SECTIONS
Mechanics of Elastic Materials. Why study mechanics? Useful for the analysis and design of load-bearing structures, such as: buildings bridges space shuttles.
University of Sydney – BDes Design Studies 1A - Structures Modes of Failure Mike Rosenman 2000 Modes of Failure solids held together by bonds between their.
Structural Elements.
Structural Integrity UNDERSTAND STRUCTURAL STRENGTH OF LOAD BEARING COMPONENTS IN MECHANICAL SYSTEM.
Structural Technology Foundations of Technology Standard 20: Students will develop an understanding of and be able to select and use construction technologies.
Engineering Structures
The Waddell A-Truss Bridge
Technical Standards Branch Class B Bridge Inspection Course BIM Bridge Inspection and Maintenance Basic Structural Considerations INFRASTRUCTURE AND TRANSPORTATION.
BRIDGES CAD 449. Design It is the essence of engineering! “… the process of devising a system, component or process to meet desired needs. It is a decision-making.
Troop 8 Truss Presentation. What are Trusses? A truss is a type of framework, usually comprising straight struts and ties, which is designed to be stiff.
Introduction Bridge members must be able to carry the loads applied to them. This presentation considers: how loads are applied to members how bridge.
Welcome Back to Design LAB! Today’s Agenda: Understand Bridge Types
Engineering Terms Bridge Unit.
TYPES OF CHASSIS FRAMES
Shear in Straight Members Shear Formula Shear Stresses in Beams
How to Handle the Stress part 1
Material Joining and Beam Bending
Structures & Buckling Developed by: Lane Azure Bob Pieri Chad Ulven.
Structural Member Properties
G.B.N GOVT. POLYTECHNIC, NILOKHERI
Design Brief Liam and Dorsa.
Loading Sand (cont.) Using Sand Hopper:
ROOFS.
Engineering Technology Program
Presentation transcript:

Bridge Design Project Using SolidWorks and SolidWorks Simulation to design, test and build structures

1 - Introduction

Prerequisites Prerequisites for this project. SolidWorks files come in three basic types; parts, assemblies and drawing.

2 - Structure Design

What are Trusses? Trusses are simple structures used as bridges for railroads, auto and foot traffic; capable of carrying large loads across spans. They consist of a road or rail surface, 2 walls and sometimes bracing between the walls.

Longer Spans For longer spans, the truss structure can be repeated several times.

Truss Types The Warren truss, shown at right, is one of the simplest and most economical types. It can even be used upside down, in this case with added vertical members.

Truss Types (continued) The Pratt (above) and Howe (below) are other common types. We will look at a truss similar to the Pratt truss.

Truss Walls The side walls of the truss are much more than walls that keep the trains or cars from falling off the truss. They are used to absorb and direct the loads placed on the truss such as trains cars.

Beams Trusses are made up of beams that are held together by bolts, welds or rivets. A common example of a beam is a closet rod used to hang clothes. Beams have the same cross section.

External Loads External Loads are forces that are applied to the beam. A common load on a beam would be weight, such as a train car. Loads are usually applied over an area of the beam.

Bending and Deflection Bending is caused by a load that is applied to a beam. The load causes the beam to bend and move in the direction of the load. The deflection is how far the beam moves from it’s original position. The larger the load, the larger the deflection. The “worst case” deflection occurs when the load is at the center of the beam.

Tension and Compression While the beam is bending, things are happening within the beam. The top portion of the beam (the face the load is applied) compresses (pushing ends together) while the opposite face sees tension (pulling ends apart).

Stress Stress measures what happens inside the beam when forces are applied. It is defined as force divided by area, common units being Pascals (Pa), Megapascals (Mpa) or pounds per square inch (psi). Stress can cause the beam to break under high loads. Analysis provides maps that show areas of high and low stress.

Yield Strength How much can the beam take before it breaks? We use the Yield Strength as the limit of the beam’s strength based on stress. Actually it measures the point where a beam bends and remains in the bent shape. Both the material and beam section contribute to the strength.

Strength of Beams The cross sectional shape influences the strength. Using a stronger material (steel rather than wood) makes the beam stronger.

Cross Section Shape Stacking two or three beams as shown in the image makes the beam harder to bend and stronger against a load.

Section Depth The deeper the section (left) the stronger the material. Wider sections (right) help a little but not that much. The reason that deeper beams are stronger is the area moment of inertia. This is calculated using the width (b) and height (h) dimensions of the section.

Area Moment of Inertia For a square section that measures 3.175mm (0.3175cm or 1/8”) on a side, the area moment of inertia is: 1 section = 8.47 base 2 stacked = 67.75 8X stronger 2 side by side = 16.94 2X stronger 3 stacked = 228.64 27X stronger

Materials The material used to create the beam has a great impact on it’s strength. Although there are many varieties of wood and alloys of metals, generally metal is stronger then wood. Note that wood, unlike metals, has a grain that makes it’s strength different in different directions.

Steel Beams The deeper beam starts to look like the steel beams used in construction of trusses, and buildings, channels, I-beams and tubes.

Cross Bracing Cross bracing stiffens the structure by preventing rotation at the joints. Using drinking straws pinned at the ends shows the difference that a brace can make.

3 – Using the Beam Calculator

Beam Calculator The Beam Calculator can be used to get an estimate of the displacement. This can be used to make sure that the analysis is within expectations.

4 – Analyzing the Structure

Analysis Stages A Structural Analysis has several stages that are followed in order. In SolidWorks: Model is where the geometry is created. Using SolidWorks SimulationXpress: Pre-Processing is used to add materials, fixtures and loads. Analysis is where the input is “run” through the analyzer. Post-Processing allows you to see the results.

Design Cycle The Design Cycle is used to “iterate” changes by returning to the original design to change the model. The changes alter the results of the analysis. SolidWorks Simulation

Fixtures and External Loads Fixtures prevent movement of portions of the structure. External Loads apply forces to the structure.

Material The material selected supplies data to the analysis in the form of numeric properties.

Joints Joints are automatically created at the intersections of the beam centerlines.

Fixtures The fixtures are applied by selecting joints in the model.

Loads The External Loads are applied by selecting joints in the model.

Mesh and Run Meshing creates beam elements and nodes that represent the model shape.

5 - Making Design Changes

Changes Using different models, follow the changes in the model and the changes in capacity of the structure.

6 – Using an Assembly

Collision Detection In an assembly, components can be checked for collision, interference or clash.

Changing Dimensions The dimensions that define the shape of the model can also be used to change the size of the model.

7 – Making Drawings of the Structure

Drawings The drawing includes a view of the model, a cut list and balloons.

8 – Reports and eDrawings

eDrawings HTML (web format) reports can be generated from the post-processor data. An eDrawing can be used to send information to other users.

9 – Building and Testing the Structure

Construction Aids The PDF files Measuring Chart and Construction Guide can be used to make construction easier.

Building the Structure Distribute 1/8" x 1/8" x 24" balsa sticks, glue and cutters. Cut, glue and assemble structure per instructions.

Testing the Structure (setup) Set up sawhorses or tables to represent the 350mm span. Place the bridge and load plate across the sawhorses or tables. Make sure to wear eye protection!

Testing the Structure (test weight) Use a drawstring bag or bucket with wire attached. Pass drawstring or wire through hole in load plate and pin in place. Load bag or bucket with weighted objects until breakage occurs.