LIG O HW S Update on Monitoring Bicoherence Steve Penn (HWS) LIGO-G040180-00-Z.

Slides:



Advertisements
Similar presentations
Bicoherence studies on LLO data Vijay Chickarmane, Gabriela Gonzalez LSU Offline analysis of bicoherence of 6hrs of data, July 12, 2002 using functions.
Advertisements

Anatomy of an ldasJob LSC Meeting March 2001 Antony C. Searle ACIGA / ANU LIGO-G Z.
Evaluation of Reconstruction Techniques
LIGO-G Z Update on the Analysis of S2 Burst Hardware Injections L. Cadonati (MIT), A. Weinstein (CIT) for the Burst group Hannover LSC meeting,
Introduction The aim the project is to analyse non real time EEG (Electroencephalogram) signal using different mathematical models in Matlab to predict.
TRACK 2™ Version 5 The ultimate process management software.
MATLAB Presented By: Nathalie Tacconi Presented By: Nathalie Tacconi Originally Prepared By: Sheridan Saint-Michel Originally Prepared By: Sheridan Saint-Michel.
LIGO-G Z RayleighMonitor Overview Patrick Sutton and Peter Saulson.
Introduction to Wavelets
LIG O HW S Introduction to Bicoherence Monitors: BicoViewer & BicoMon Steve Penn (HWS)
HossamTalaat - MATLAB Course - KSU - 21/1/24 1 IEEE Student Branch - College of Engineering - KSU Getting started with Simulink By Prof. Hossam Talaat.
Lecture 16 Random Signals and Noise (III) Fall 2008 NCTU EE Tzu-Hsien Sang.
LIGO-G0200XX-00-M DMT Monitors: Beyond the FOM John Zweizig LIGO/Caltech LLO August 18, 2006.
EE 198 B Senior Design Project. Spectrum Analyzer.
SpecMon Tim Bodiya University of Michigan August 22, 2004 G W DetCamp.
1 QED In Vivo USB Input Output Box configuration This tutorial contains a number of instructions embedded in a great deal of explanation. Procedures that.
LIGO-G E ITR 2003 DMT Sub-Project John G. Zweizig LIGO/Caltech Argonne, May 10, 2004.
Technion – Israel Institute of Technology Department of Electrical Engineering Winter 2009 Instructor Amit Berman Students Evgeny Hahamovich Yaakov Aharon.
Array Response Functions with ArrayGUI
LIGO-G DM. Landry – Amaldi5 July 9, 2003 Laser Interferometer Gravitational Wave Observatory Monitoring LIGO Data During the S2 Science Run Michael.
Matlab -based Scope Automation and data analysis SW 29/05/2012 Presents by- Abed Mahmoud & Hasan Natoor Supervisor– Avi Biran.
1/25 Current results and future scenarios for gravitational wave’s stochastic background G. Cella – INFN sez. Pisa.
Heart Sound Background Noise Removal Haim Appleboim Biomedical Seminar February 2007.
3 May 2011 VESF DA schoolD. Verkindt 1 Didier Verkindt Virgo-LAPP CNRS - Université de Savoie VESF Data Analysis School Data Quality and vetos.
Remote Sensing Supervised Image Classification. Supervised Image Classification ► An image classification procedure that requires interaction with the.
OL Series 750 Automated Spectroradiometric Measurement System The OL Series 750 is an extremely versatile spectroradiometric measurement system capable.
Analysis of nonstationarity in LIGO S5 data using the NoiseFloorMon output A proposal for a seismic Data Quality flag. R. Stone for the LSC The Center.
- 1 - YLD 10/2/99ESINSA Tools YLD 10/2/99ESINSA Filters Performances A filter should maintain the signal integrity. A signal does not exist alone.
LIGO-G Z 3/15/01Penn State1 The datacondAPI Sam Finn, for the datacondAPI Team: W. Anderson, K. Blackburn, P. Charlton, P. Ehrens, A. Gonzalez,
LIGO- G Z Beyond the PSD: Discovering hidden nonlinearity Tiffany Summerscales Penn State University.
LIGO-G D Status of Stochastic Search with LIGO Vuk Mandic on behalf of LIGO Scientific Collaboration Caltech GWDAW-10, 12/15/05.
CSC2515: Lecture 7 (post) Independent Components Analysis, and Autoencoders Geoffrey Hinton.
LIGO-G Z Status of MNFTmon Soma Mukherjee +, Roberto Grosso* + University of Texas at Brownsville * University of Nuernberg, Germany LSC Detector.
Some thoughts on error handling for FTIR retrievals Prepared by Stephen Wood and Brian Connor, NIWA with input and ideas from others...
The Wavelet Tutorial: Part2 Dr. Charturong Tantibundhit.
S.Klimenko, LSC March, 2001 Update on Wavelet Compression Presented by S.Klimenko University of Florida l Outline Ø Wavelet compression concept E2 data.
LIGO-G Z Center for Gravitational Wave Physics, Penn State 1 RayleighMonitor: A Time-Frequency Gaussianity Monitor for the DMT Lee Samuel Finn,
LIGO-G E Network Analysis For Coalescing Binary (or any analysis with Matched Filtering) Benoit MOURS, Caltech & LAPP-Annecy March 2001, LSC Meeting.
Characterization of PEM Channels Chirpiness of the Test Mass motion due to “Noise” Anthony Rizzi Staff Scientist, LIGO LIGO-G D.
LIGO-G Z Easy DMT Easy DMT: Using the chInterface Class to Create/Upgrade DMT Monitors Rauha Rahkola, Univ. of Oregon LSC Meeting, August 19-22,
GEO Online Detector Characterization System R. Balasubramanian Cardiff University LSC March 2003 LIGO-G Z.
S.Klimenko, LSC, August 2004, G Z BurstMon S.Klimenko, A.Sazonov University of Florida l motivation & documentation l description & results l.
Modal Analysis Dept. of Mechanical Engineering Yungpeng Wang 南臺科技大學 STUST.
S.Klimenko, March 2003, LSC Burst Analysis in Wavelet Domain for multiple interferometers LIGO-G Z Sergey Klimenko University of Florida l Analysis.
Geology 6600/7600 Signal Analysis 23 Oct 2015
Stochastic Background Data Analysis Giancarlo Cella I.N.F.N. Pisa first ENTApP - GWA joint meeting Paris, January 23rd and 24th, 2006 Institute d'Astrophysique.
LIGO-G Z r statistics for time-domain cross correlation on burst candidate events Laura Cadonati LIGO-MIT LSC collaboration meeting, LLO march.
LIGO-G9900XX-00-M DMT Monitor Verification with Simulated Data John Zweizig LIGO/Caltech.
LIGO-G E S2 Data Quality Investigation John Zweizig Caltech/LIGO.
LIGO-G E Lazzarini - 60Hz CorrelationsLIGO Laboratory at Caltech 1 60 Hz Mains Correlations for the U.S. Power Grids The Aspen Winter Conference.
S.Klimenko, LSC meeting, March 2002 LineMonitor Sergey Klimenko University of Florida Other contributors: E.Daw (LSU), A.Sazonov(UF), J.Zweizig (Caltech)
Coincidence algorithm and an optimal unification of GW – detectors A.V.Gusev, V.N.Rudenko SAI MSU, Moscow, Russia Moscow University Physics Bulletin, 2009,
© Copyright Mistras Group Inc MISTRAS GROUP CONFIDENTIAL Noesis Noesis specializes in Acoustic Emission (AE) data analysis including real-time software.
CSC2535: Computation in Neural Networks Lecture 7: Independent Components Analysis Geoffrey Hinton.
Bryant Tober. Problem Description  View the sound wave produced from a wav file  Apply different modulations to the wave file  Hear the effect of the.
LIGO-G Z E4 Correlations: Detector Characterization Nelson Christensen Carleton College August 15, 2001.
EEE4176 Applications of Digital Signal Processing
Overview Modern chip designs have multiple IP components with different process, voltage, temperature sensitivities Optimizing mix to different customer.
National Mathematics Day
Optical Coherence Tomography
Classification of modulation
Targeted Searches using Q Pipeline
Stochastic background search using LIGO Livingston and ALLEGRO
Line tracking methods used in LineMon
Soft X-Ray pulse length measurement
Environmental Monitoring: Coupling Function Calculator
M Ashley - LSC Meeting – LIGO Hanford, 12 Nov 2003
S2 Bilinear Couplings Study
Steve Penn (HWS) & Vijay Chickarmane (LSU)
Presentation transcript:

LIG O HW S Update on Monitoring Bicoherence Steve Penn (HWS) LIGO-G Z

LIG O HW S LSC Meeting March First Order Statistics 1D Statistics: »Correlation: »Power Spectral Density: »Coherence: –Tells us power and phase coherence at a given frequency

LIG O HW S LSC Meeting March Second Order Statistics 2D Statistics: »Bicumulant: »Bispectral Density: »Bicoherence: –Tells us power and phase coherence at a coupled frequency

LIG O HW S LSC Meeting March Why Higher Order Statistics? For a Gaussian process: For independent processes: Allows for isolation of nonGaussian processes »Visual check of frequency coupling and phase noise »Statistical test for the probability of gaussianity and linearity »Iterative process to reconstruct nongaussian signal from the higher order cumulants

LIG O HW S LSC Meeting March Monitor Versions: MatLab tools Vijay’s tool: Calculates auto-bicoherence Monitors integrated auto-bicoherence over specified frequency area Allows one to see evidence of bilinear couplings if noise low No background monitoring or multiple calculations per data block. Does not calculate cross-bicoherence (limits full diagnosis of noise problem) Vijay, the code author and primary user, has taken another job. MatLab HOSA toolbox Calculates auto- & cross-bicoherence Graphical smoothing All MatLab’s advantages No easy integration with DMT No easy integration with background monitoring Normalization was not equivalent to our tools

LIG O HW S LSC Meeting March Monitor Versions: BicoMon (Background Monitor) Current Version (Exists. Written since August Meeting) Monitor integrates bicoherence over specified frequency ROI Calculates bicoherence for multiple channel combinations Integrates bicoherence over multiple specified ROI Integrates bicoherence over entire unique area (Gaussianity) Trends Data and sends to DMTviewer.  Resolved the unique channel problem with DMT  Included proper decimation with filtering rather than rebinning  Tests for Operational State

LIG O HW S LSC Meeting March C 2 H1:LSC-AS_Q16384 H1:SUS-ITMX_OPLEV_PERROR M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_ALL M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_50_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_50_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_50_ C 2 H1:LSC-AS_Q16384 H1:SUS-ITMY_OPLEV_PERROR M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_ALL M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_50_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_50_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_50_ C 1 H1:LSC-AS_Q M Bico:H1:AS_Q_ALL M Bico:H1:AS_Q_120_2_ M Bico:H1:AS_Q_120_10_ M Bico:H1:AS_Q_120_38_ Configuration File Calculation Parameters Measurement Parameters

LIG O HW S LSC Meeting March Monitor Versions: BicoViewer (Foreground Monitor) Plots Bicoherence (auto- or cross-) & PSD’s of input channels Proper decimation & Optimized windowing User selects: »Channels »Frequency Range and Resolution »Data Span »Data Overlap Outputs GIF files of the plots Vectorized FFT routines for speed Heterodyning Strip Chart for Monitoring Bicoherence of certain ROI Output calculation parameters as configuration for BicoMon

LIG O HW S LSC Meeting March 20049

LIG O HW S LSC Meeting March

LIG O HW S LSC Meeting March

LIG O HW S LSC Meeting March Online Demo

LIG O HW S LSC Meeting March Conclusions Bicoherence monitors could be a useful tool for analyzing data for glitches, gaussianity, upconversion, and chirps. We are now at sensitivity where up-converted data can be seen BicoMon operational. BicoViewer works (beta test stage). Now that the IFO is at/near a sensitivity to see bicoherence, we need people to use monitor and make bicoherence an analysis tool on par with PSDs or coherence.