Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.

Slides:



Advertisements
Similar presentations
The Thick Disks of Spiral Galaxies as Relics from Gas-Rich, Turbulent, Clumpy Disks at High Redshifts Frédéric Bournaud, Bruce G. Elmegreen, and Marie.
Advertisements

Modelling the Ultra-Faint Dwarf Galaxies and Tidal Streams of the Milky Way M. Fellhauer Universidad de Concepcion in collaboration with N.W. Evans 1,
The Halo of the Milky Heidi Jo Newberg Rensselaer Polytechnic Institute.
Talk to me about our graduate program in astrophysics.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
HWR Princeton 2005 IV: Milky Way / Local Group Tomography Hans-Walter Rix MPI for Astronomy Heidelberg The stellar distribution in the Milky Way is not.
Galaxy Formation and Evolution Open Problems Alessandro Spagna Osservatorio Astronomico di Torino Torino, 18 Febbraio 2002.
Dissolving globular clusters: the fate of M 12 Work in collaboration with F. Paresce (INAF) and L. Pulone (Obs. Rome)
Counting Dark Matter Sub-halos: Gaps in Star Streams Ray Carlberg University of Toronto.
TeV Particle Astrophysics, Venice, August 29, 2007J. Siegal-Gaskins1 Signatures of ΛCDM substructure in tidal debris Jennifer Siegal-Gaskins in collaboration.
Tidal Streams in the Milky Way (and M31) Jorge Peñarrubia (University of Victoria, Canada) & David Martinez Delgado (IAC, Spain) 22th of June 2006 Valencia.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
Dwarf Galaxies and Their Destruction... Marla Geha Carnegie Observatories (OCIW) Collaborators: P. Guhathakurta (UCSC), R. van der Marel (STScI)
Galactic archaeology Rodrigo Ibata Observatoire de Strasbourg.
Unveiling the formation of the Galactic disks and Andromeda halo with WFMOS Masashi Chiba (Tohoku University, Sendai)
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
Probing DM Halo Shapes Using Satellite Galaxy Kinematics Jeremy Bailin (Swinburne) Chris Power, Brad Gibson (Swinburne), Peder Norberg (ETH), Dennis Zaritsky.
Chemical Signatures of the Smallest Galaxies Torgny Karlsson SIfA, School of Physics, The University of Sydney Collaborators: Joss Bland-Hawthorn and Ralph.
Star Streams: Smooth or Lumpy? Ray Carlberg & PAndAS (Wayne Ngan simulations)
Testing the Equivalence Principle for Dark Matter Using Tidal Streams Michael Kesden, CITA Collaborator: Marc Kamionkowski, Caltech COSMO ‘06 Tahoe City,
Simon Portegies Zwart (Univ. Amsterdam with 2 GRAPE-6 boards)
The Milky Way Galaxy James Binney Oxford University.
Numerical Modeling of Hierarchical Galaxy Formation Cole, S. et al. 2000, MNRAS 319, Adam Trotter December 4, 2007 Astronomy 704, UNC-Chapel Hill,
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
Lens Galaxy Environments Neal Dalal (IAS), Casey R. Watson (Ohio State) astro-ph/ Who cares? 2.What to do 3.Results 4.Problems! 5.The future.
Galaxy Formation and Evolution Galactic Archaeology Chris Brook Modulo 15 Room 509
Galaxy-Galaxy Lensing What did we learn? What can we learn? Henk Hoekstra.
1 Galactic Science and MOS on the WHT Amina Helmi.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
Effects of baryons on the structure of massive galaxies and clusters Oleg Gnedin University of Michigan Collisionless N-body simulations predict a nearly.
Gaia – Revue des Exigences préliminaires 1 Testing dark matter with Gaia O. Bienaymé O. Bienaymé Strasbourg Observatory.
8th Sino-German Workshop Kunming, Feb 23-28, 2009 Milky Way vs. M31: a Tale of Two Disks Jinliang HOU In collaboration with : Ruixiang CHANG, Shiyin SHEN,
The remote globular cluster system of M31 LAMOST Workshop, 19 th July 2010 Dougal Mackey (RSAA, ANU)1 The Newly-Discovered Remote Globular Cluster System.
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
Astrometry & the Yale/WIYN ODI Survey. Potential astrometric projects Local luminosity function (van Altena, et al.) obtain  ≤ 0.10 parallaxes to 150.
The Dark Side of the Universe Sukanya Chakrabarti (FAU)
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Telling Tails About Galaxies (Stellar Halos, Satellites and Hierarchical Structure Formation) Kathryn V Johnston (Wesleyan) & James S Bullock (Harvard)
Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.
KIAA Lectures Beijing, July 2010 Ken Freeman, RSAA, ANU Lecture 1: Introduction.
次世代位置天文衛星による 銀河系ポテンシャル測定 T. Sumi (Nagoya STE) T. Sumi (Nagoya STE) K.V. Johnston (Columbia) K.V. Johnston (Columbia) S. Tremaine (IAS) S. Tremaine (IAS)
Spiral Triggering of Star Formation Ian Bonnell, Clare Dobbs Tom Robitaille, University of St Andrews Jim Pringle IoA, Cambridge.
A CDM view of the Local Group dSphs Jorge Peñarrubia In collaboration with Julio F. Navarro & Alan McConnachie Jorge Peñarrubia In collaboration with Julio.
Zheng Dept. of Astronomy, Ohio State University David Weinberg (Advisor, Ohio State) Andreas Berlind (NYU) Josh Frieman (Chicago) Jeremy Tinker (Ohio State)
Modelling the Stellar Populations of The Milky Way and Andromeda Collaborators: Theory:Observations: Kathryn Johnston (Columbia) Annette Ferguson (Edinburgh)
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
The Ultra-Faint Milky Way Satellites
Evidence for a Long-Range Dark Matter Self Interaction (“Fifth Force”) Glennys R. Farrar Center for Cosmology and Particle Physics New York University.
Probing the dark matter distribution in the Milky Way with tidal streams Monica Valluri Kavli Institute for Cosmological Physics University of Chicago.
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
Evidence for a Long-Range Dark Matter Self Interaction (“Fifth Force”) Glennys R. Farrar Center for Cosmology and Particle Physics New York University.
Xiangxiang Xue Hans-Walter Rix, G. Zhao, P. Re Fiorentin, T. Naab, M. Steinmetz, E. F. Bell, F. C. van den Bosch, T. C. Beers, R. Wilhelm, Y. S. Lee, C.
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
The High Redshift Universe Next Door
Dark Matter in the Milky Way - how to find it using Gaia and other surveys Paul McMillan Surveys For All, 1st February 2016.
Nearby mergers: ellipticals in formation? Thorsten Naab University Observatory, Munich October 4th, 2006 From the Local Universe to the Red Sequence Space.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Galactic Structure and Near-field Cosmology via Astrometry with ODI Dana Casetti, Terry Girard, Bill van Altena - Yale Orbits of MW: satellites satellites.
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Making action-angle disc models for Gaia Paul McMillan Lund Observatory Collaborators: J. Binney, T. Piffl, J. Sanders.
Gaia ITNG2013 School, Tenerife Ken Freeman, Lecture 4: the stellar halo September 2013.
Dissecting the Milky Way with SDSS: Stellar Number Density Distribution Mario Juric, with Z. Ivezic, A. Brooks, R.H.Lupton,
Dynamical signatures of mergers Amina Helmi. Dynamical signatures of mergers In collaboration Facundo Gomez, Maarten Breddels, Laura.
The prolate shape of the Galactic halo Amina Helmi Kapteyn Astronomical Institute.
Pete Kuzma PhD student, Research School of Astronomy and Astrophysics
The Virgo Stellar Stream
Learning about first galaxies using large surveys
The Galactic Stellar Halo imaged by VST
Modeling the Extended Structure of Dwarf Spheroidals (Carina, Leo I)
Presentation transcript:

Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08

Local Group Cosmology Cosmological Paradigm predicts that galaxies form through mergers of smaller galaxies This process continues nowadays in the Milky Way…

Local Group Cosmology The Local Group is the only system where the kinematics of individual stars can be measured with high precision why is this important? We want to decompose the hierarchical formation of our galaxy = set of individual mergers However, the remnants of accreted satellites blur with time Photometric surveys can only reveal the most recent accretions

Full 3D Kinematics  Unbound particles escape through leading and trailing tails  Tails approx. follow the orbit of the progenitor system …. strong constraints on the present host potential progenitor’s orbit progenitor’s mass lost fraction progenitor’s luminosity Peñarrubia et al. (2005) for each accretion event cosmological merger tree

Radial velocity surveys Proper motions can only be measured in a small volume (GAIA<20 kpc) In contrast, radial velocities can be measured < 1 Mpc Keck) Mapping the sky via Radial velocity surveys:  RAVE: m D< 1.6 kpc (M=5) 120 objects - field  LAMOST: m D< 10 kpc (M=5) 4000 objects - field Position + radial velocity = 4D info of stellar streams to infer the orbit+mass of progenitor we need numerical modelling

Numerical modelling of tidal streams Owing to the large parameter space model degeneracies are unavoidable Free parameters Flattening (q) of the host potential Orbital apocentre Orbital inclination Orbital eccentricity Mass and concentration of the satellite’s DM halo Segregation of the satellite’s stellar component Satellite luminosity Accretion time (if progenitor is unknown) Present progenitor position + velocity (6 param.) Constraints: spectroscopic surveys will break fundamental model degeneracies position of stream pieces from photometric surveys

Ideal Targets for LAMOST Previous photometric surveys have revealed a large number of stream-like structures at D< 50 kpc Potential targets for LAMOST are:  Sagittarius stream  Monoceros stream  Virgo over-density  Hercules-Aquila over-density  Palomar 5 stream  …….. etc All located in the Northern Galactic Hemisphere !! (the South remains terra incognita) What could we learn if we had LAMOST data now??

Example 1: The Sgr stream and the shape of the Milky Way potential Belokurov et al (SDSS+2MASS) Sgr core

Example 1: The Sgr stream and the shape of the Milky Way potential Constraints: Sgr dwarf’s position: (D,l,b) = (25 kpc, 5.6 0, ) Sgr dwarf’s radial velocity: v rad = 171 km/s Orbital plane inclination: i=76 o Free parameters tangential vel. (v tan ) (eccentricity==rapo) halo axis-ratio (q h )

Example 1: The Sgr stream and the shape of the Milky Way potential Oblate halo models (0.85<q<0.95) match precession rate Prolate halo models (q>1) match radial velocities along the stream from 2-MASS (M-giants) : using the same data inconsistent results !! Law et al Johnston et al. 2005

Example 2: The Monoceros stream Again, M-Giant over-densities Penarrubia et al M-giants show a large dispersion on the sky They move on nearly circular orbits Do all over-densities belong to the Mon stream?

Example 2: The Monoceros stream Degenerated model : Prograde vs Retrograde orbits Radial velocities between l > 220 o l < 110 o will break model degeneracy

Example 3: Field(s) of streams In the next few years, the number of streams detected via photometric surveys (SDSS I,II,III; Pan-STARRS) will dramatically increase. Orphan Sgr Monoceros Virgo Pal 5 Kinematics will be crucial for their modelling….

Example 4: Halo clumpiness According to CDM, there are ~10 4 subhaloes in the MW with M>10 7 M sol Cold tidal streams (e.g from GCs with  ~ 1 km/s) may be heated by encounters with DM subhaloes kinematical surveys of GC streams could potentially constrain the number density of DM clumps Grillmair & Dionatos 2006