GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
RIKEN Seminar, September 8th, Complete Electric Dipole Response and Neutron Skin in 208 Pb A. Tamii Research Center for Nuclear Physics, Osaka University.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Dipole Strengths in 112,120 Sn and Systematics of the Pygmy Dipole Resonance at Z=50 Shell Closure BANU ÖZEL 1,2, J. ENDERS 1, Y. KALMYKOV 1, P. von NEUMANN-COSEL.
Soft Electric Dipole Modes in Heavy Nuclei: Some Selected Examples S-DALINAC TU DARMSTADT Soft E1 modes: the case of 208 Pb * Supported by DFG under contracts.
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Beta decay and Structure of Exotic Nuclei near 78 Ni Alexander Lisetskiy NSCL,JINA,MSU.
Measurement of 58 Co Gamow-Teller Strength via (t, 3 He) Arthur L. Cole National Superconducting Cyclotron Laboratory, Michigan State University ref: ESA.
Excitation of nucleon resonances in charge-exchange reactions J. Benlliure Universidad de Santiago de Compostela Spain.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Three-body cluster state in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka University H. Fujimura, H. Fujita, M. Fujiwara,
Experimental Nuclear Physics in ATOMKI Debrecen. Cyclotron laboratory in ATOMKI, Debrecen.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
University of Surrey-23/11/2010. Symmetries and Conservation Laws Introduction of Isospin Charge Exchange Reactions Beta Decay Combined Analysis Recent.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t)
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
A Hybrid Configuration Mixing model with applications to odd mass nuclei near closed shells G. Colò The future of multi-reference DFT, Warsaw, June 26.
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI Groningen Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
High-Resolution Spectroscopy in charge- exchange reactions with rare-isotope beams Applications to weak-reaction rates for astrophysics Remco G.T. Zegers.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Isospin Mixing And In-beam Study Of 56 Co Non-yrast States At MLL/Miniball. Motivation And First Glance On The Results Of The Experiment Ana Montaner Pizá.
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Mass Measurements of Short-lived Nuclei at HIRFL-CSR
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Merve DOĞAN İstanbul University
gamma-transmission coefficients are most uncertain values !!!
Search for unbound excited states of proton rich nuclei
High-resolution Studies of Charge Exchange on 47,48Ti in comparison with Shell Model Calculations Ela Ganioğlu Istanbul University E. Ganioglu, Stockholm.
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Isospin Symmetry test on the semimagic 44Cr
Role of Pions in Nuclei and Experimental Characteristics
Lanzhou.
High resolution study of TZ= +3 → +2 Gamow-Teller transitions in the
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Neutrino-Nucleus Reactions and Nucleosynthesis
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Status and perspectives of the LNS-FRIBS facility
Presentation transcript:

GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei Yoshitaka FUJITA (Osaka Univ.) INPC 2007 / June 3-8  operator : simple operator (states with different shapes are not connected)

Direct Reactions with Light Projectiles Projectile 3 He Target Coulomb Excitation Elastic Scattering Inelastic Scattering Pick-up Stripping Charge-exchange Similarity with  decay! by Berta Rubio |i>  |f>  -int. Ejectile t

B(GT) derivation

GT (  ) : Weak Process: Important roles in the Universe  decay : Absolute B(GT), limited to low-lying state CE reactions : relative B(GT), Highly Excitation Region  decay  isospin symmetry  CE reaction Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei Yoshitaka FUJITA (Osaka Univ.) INPC 2007 / June 3-8  operator : simple operator (states with different shapes are not connected)

Key Words High Energy Resolution in the Experiment Isospin Symmetry in the Nuclear Structure Combined Analysis of  -decay and CE Reaction

58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) 0 o spectra Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) SpSp J. Rapaport et al. NPA (‘83) T > states GTGR

**( 3 He,t): high resolution and sensitivity !

9 Be( 3 He,t) 9 B spectrum (at various scales)

9 Be( 3 He,t) 9 B spectrum (II) Isospin selection rule prohibits proton decay of T=3/2 state!

Isospin Selection Rule : in p-decay of 9 B + 9 B* p + 8 Be* 1p-1h p n T z : -1/2+ 0 = -1/2 T : 1/2+ 0 (low lying) = 1/2 T : 1/2+ 1 (higher Ex) = 1/2 & 3/2 *T=1 state in 8 Be is only above E x =16.6 MeV

9 Be( 3 He,t) 9 B spectrum (III) MeV T=3/2 state is very weak! Strength ratio of T=1/2 vs. 3/2, 3/2 - states: 140:1

 Shell Structure and Cluster Structure  n   p 9 Be 9B9B 9 Li 9C9C T=3/2 T z =3/2 T z =1/2T z =-1/2 T z =-3/2 Excited state: SM-like g.s.: Cluster-like suggestion by Y. Kanada-En’yo proton: p 3/2 closed neutron: p 3/2 closed

RCNP Ring Cyclotron Good quality 3 He beam (140 MeV/nucleon)

Grand Raiden Spectrometer Large Angle Spectrometer 3 He beam ( 3 He, t) reaction

Matching Techniques

**Isospin Symmetry Structure in Mass A Nuclei (Isobars)

Nuclei & Coin Coin back front Nuclei isospin T=1 triplet Cr 26 T z = 1T z = Fe 24 T z = Mn 25

T=1 system Cr 26 A=50 system Coulomb Energy: important Mn Fe 24

T=1 symmetry : Structures & Transitions Cr Mn Fe 24

B(GT) values from Symmetry Transitions (A=26) Y. Fujita et al., PRC 67 (‘03)

Supernova Cycle

 important K.L &G.M-P Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Cr, Mn, Fe, Co, Ni region pf -shell Nuclei ! Crucial Weak Processes during the Core Collapse

GT states in A=42-58 T z =0 nuclei starting from T z = +1 pf –shell nuclei

GT strengths in A=42-58 Log ft =3.2 [B(GT)=2.4]

GT strengths in A=42-58 GT-GR

GT states in A=42-58 T z =0 nuclei T. Adachi et al. H. Fujita et al. Y. Fujita et al.

**Derivation of “absolute” B(GT) values  -decay: T 1/2 and absolute B(GT) values but only for the low-lying states *( 3 He,t) reaction: highly-excited states can be accessed but only the relative B(GT) values

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka B. Rubio

Isospin Symmetry Transitions: 50 Cr( 3 He,t)  50 Mn   -decay 50 Fe Q EC =8.152(61) MeV T 1/2 =0.155(11) s (Z,N)=(24,26)(25,25)(26,24)

50 Cr( 3 He,t) 50 Mn

**Reconstruction of  decay from ( 3 He,t) ---assuming isospin symmetry ---

Simulation of  -decay spectrum  -decay feeding ratios are deduced ! Y. Fujita et al.PRL 95 (2005)

Absolute B(GT) values -via reconstruction of  -decay spectrum-  -decay experiment T 1/2 =0.155(11) s New value B(GT)=0.50(13) *20% smaller than deduced in the  -decay: 0.60(16) Absolute intensity: B(GT) Y. Fujita et al. PRL 95 (2005) B(F)=N-Z Relative feeding intensity from ( 3 He,t) t i =partial half-life

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka B. Rubio

Mirror nuclei 48V48V 52 Mn 56 Co 52 Co 56 Cu 48 Mn ++ ( 3 He,t) N=Z T = 2 Isospin Symmetry in pf-shell Nuclei Ni Cr 28 T z =0 T z =1 T z =-1 52 Ni T z =2 T z =-2 52 Cr 48 Cr 52 Fe 56 Ni 56 Fe 56 Zn 48 Ti 48 Fe by Y. Fujita, B. Rubio

Mirror nuclei 48V48V 52 Mn 56 Co 52 Co 56 Cu 48 Mn ++ ( 3 He,t) N=Z T = 2 Isospin Symmetry in pf-shell Nuclei Ni Cr 28 T z =0 T z =1 T z =-1 52 Ni T z =2 T z =-2 52 Cr 48 Cr 52 Fe 56 Ni 56 Fe 56 Zn 48 Ti 48 Fe by Y. Fujita, B. Rubio How is the T 1/2 value?

Comparison: (p, n) and ( 3 He,t) IAS g.s. 52 Cr(p, n) 52 Mn Ep =120 MeV D. Wang et al., NP A480 (’88) 285

 -decay Half-life T 1/2 -via reconstruction of  -decay spectrum- abs. B(GT) distribution from ( 3 He,t) B(F)=N-Z

52 Ni  -decay Half-life T1/2  -decay exp. (PRC 49, 2440, ‘94) T 1/2 = 38 (5) ms [40.8(2) ms (’06 GANIL)] abs. B(GT) distribution [ 52 Cr( 3 He,t)] Q EC =11.88 MeV [  -decay + IMME (‘06)] B(F)=N-Z Isospin symmetry estimation T 1/2 = 39 (3) ms SM cal. (PRC 57, 2316, ’98) T 1/2 = 50 ms Mass formula (T. Tachibana et al.) T 1/2 = 35 ms Uncertainty of the Q-value should still be considered !

Analog Relationship (T=0,1,2) stable

58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) 0 o spectra Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) SpSp J. Rapaport et al. NPA (‘83) T=2

Analog Relationship (T=0,1,2) stable

Summary * Isospin Symmetry was introduced * High resolution of the ( 3 He,t) reaction allowed the comparison of analogous transitions * Properties of proton-rich “far-stability nuclei” is deduced by the combined analysis of  -decay and ( 3 He,t) reaction --- B(GT), Half-life T 1/2 --- **Accurate measurements of T 1/2 & Mass are very important** Collaboration of Stable beam facility and RI beam facility is very important!

High-Resolution Collaborations Gent (Belgium) : ( 3 He, t), (d, 2 He), (  ’) GSI, Darmstadt (Germany) : inverse kinematics ISOLDE, CERN (Switzerland) :  decay iThemba LABS. (South Africa) : (p, p’), ( 3 He, t) Jyvaskyla (Finland) :  decay Koeln (Germany) :  decay, ( 3 He, t), theory KVI, Groningen (The Netherlands) : (d, 2 He) Leuven (Bergium) :  decay LTH, Lund (Sweden) : theory Osaka University (Japan) : (p, p’), ( 3 He, t), theory Surrey (GB) :  decay TU Darmstadt (Germany) : (e, e’), ( 3 He, t) Valencia (Spain) :  decay Michigan State University (USA) : theory, (t, 3 He) Muenster (Germany) : (d, 2 He), ( 3 He,t) University of Tokyo : theory