Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type Matthias Eck Hugues Hoppe Matthias Eck Hugues Hoppe University of Darmstadt.

Slides:



Advertisements
Similar presentations
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Advertisements

Lapped textures Emil Praun Adam Finkelstein Hugues Hoppe
My PhD Thesis Work l With: n Tony DeRose (Computer Science) n Tom Duchamp (Mathematics) n John McDonald (Statistics) n Werner Stuetzle (Statistics) n...
Texture-Mapping Progressive Meshes
Geometry Image Xianfeng Gu, Steven Gortler, Hugues Hoppe SIGGRAPH 2002 Present by Pin Ren Feb 13, 2003.
Boolean Operations on Subdivision Surfaces Yohan FOUGEROLLE MS 2001/2002 Sebti FOUFOU Marc Neveu University of Burgundy.
A Geometric Database for Gene Expression Data Baylor College of Medicine Gregor Eichele Christina Thaller Wah Chiu James Carson Rice University Tao Ju.
Multiresolution Analysis of Arbitrary Meshes Matthias Eck joint with Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery and Werner Stuetzle Matthias.
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
Inter-Surface Mapping John Schreiner, Arul Asirvatham, Emil Praun (University of Utah) Hugues Hoppe (Microsoft Research)
Distance Between a Catmull- Clark Subdivision Surface and Its Limit Mesh Zhangjin Huang, Guoping Wang Peking University, China.
Classic Subdivision Schemes. Schemes Catmull-Clark (1978) Doo-Sabin (1978) Loop (1987) Butterfly (1990) Kobbelt (1996) Mid-edge (1996 / 1997)
CS Peter Schröder Subdivision I: The Basic Ideas.
Surfaces Chiew-Lan Tai. Surfaces 2 Reading Required Hills Section Hearn & Baker, sections 8.11, 8.13 Recommended Sections 2.1.4, , 3D Computer.
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
View-Dependent Refinement of Progressive Meshes Hugues Hoppe Microsoft Research SIGGRAPH 97.
1 Displaced Subdivision Surfaces Aaron Lee Princeton University Henry Moreton Nvidia Hugues Hoppe Microsoft Research.
GATE D Object Representations (GATE-540) Dr.Çağatay ÜNDEĞER Instructor Middle East Technical University, GameTechnologies & General Manager SimBT.
Offset of curves. Alina Shaikhet (CS, Technion)
Fractal Mountains, Splines, and Subdivision Surfaces Jordan Smith UC Berkeley CS184.
Lapped Textures Emil Praun Adam Finkelstein Hugues Hoppe Emil Praun Adam Finkelstein Hugues Hoppe Princeton University Microsoft Research Princeton University.
Bounded-distortion Piecewise Mesh Parameterization
Lapped Textures SIGGRAPH 2000 Emil Praun Adam Finkelstein Hugues Hoppe.
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 4: 3D Objects and Meshes Ravi Ramamoorthi
Visualization and graphics research group CIPIC January 30, 2003Multiresolution (ECS 289L) - Winter MAPS – Multiresolution Adaptive Parameterization.
Normal based subdivision scheme for curve and surface design 杨勋年
Subdivision Overview Subdivision is a two part process Control Mesh
FiberMesh: Designing Freeform Surfaces with 3D Curves
Subdivision Primer CS426, 2000 Robert Osada [DeRose 2000]
11/08/00 Dinesh Manocha, COMP258 Subdivision Curves & Surfaces Work of G. de Rham on Corner Cutting in 40’s and 50’s Work of Catmull/Clark and Doo/Sabin.
Mesh Parameterization: Theory and Practice Non-Planar Domains.
Visualization and graphics research group CIPIC Feb 18, 2003Multiresolution (ECS 289L) - Winter Progressive Meshes (SIGGRAPH ’96) By Hugues Hoppe.
Introduction to Boolean Operations on Free-form Solids CS284, Fall 2004 Seung Wook Kim.
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Consistent Parameterizations Arul Asirvatham Committee Members Emil Praun Hugues Hoppe Peter Shirley.
Smooth Geometry Images Frank Losasso, Hugues Hoppe, Scott Schaefer, Joe Warren.
Introduction to Subdivision Surfaces. Subdivision Curves and Surfaces 4 Subdivision curves –The basic concepts of subdivision. 4 Subdivision surfaces.
Improved Error Estimate for Extraordinary Catmull-Clark Subdivision Surface Patches Zhangjin Huang, Guoping Wang School of EECS, Peking University, China.
Smooth Spline Surfaces over Irregular Topology Hui-xia Xu Wednesday, Apr. 4, 2007.
Projective Texture Atlas for 3D Photography Jonas Sossai Júnior Luiz Velho IMPA.
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
Graphics Graphics Korea University cgvr.korea.ac.kr Creating Virtual World I 김 창 헌 Department of Computer Science Korea University
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
Creating & Processing 3D Geometry Marie-Paule Cani
Texture Mapping by Model Pelting and Blending
Geometric Modeling using Polygonal Meshes Lecture 1: Introduction Hamid Laga Office: South.
1 Surface Applications Fitting Manifold Surfaces To 3D Point Clouds, Cindy Grimm, David Laidlaw and Joseph Crisco. Journal of Biomechanical Engineering,
Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe.
Seminar on B-Spline over triangular domain Reporter: Gang Xu Institute of Computer Images and Graphics, Math Dept. ZJU October 26.
Non-Uniform Rational B-Splines NURBS. NURBS Surfaces NURBS surfaces are based on curves. The main advantage of using NURBS surfaces over polygons, is.
Cindy Grimm Parameterizing N-holed Tori Cindy Grimm (Washington Univ. in St. Louis) John Hughes (Brown University)
A construction of rational manifold surfaces of arbitrary topology and smoothness from triangular meshes Presented by: LiuGang
Procedural Models How to easily generate complex data?
Automatic Construction of Quad-Based Subdivision Surfaces using Fitmaps Daniele Panozzo, Enrico Puppo DISI - University of Genova, Italy Marco Tarini DICOM.
Lee Byung-Gook Dongseo Univ.
In the name of God Computer Graphics Bastanfard. Curve Function(2) Other method is approximate it using a poly-line. Just locate a set of points along.
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Subdivision Surfaces Greg Humphreys University of Virginia CS 445, Fall 2003.
Subdivision Surfaces Dr. Scott Schaefer.
Construction of Navau and Garcia. Basic steps Construction has two parameters: smoothness k and n > k, defining how closely the surface follows the control.
Reverse Engineering of Point Clouds to Obtain Trimmed NURBS Lavanya Sita Tekumalla Advisor: Prof. Elaine Cohen School of Computing University of Utah Masters.
Subdivision Schemes. Center for Graphics and Geometric Computing, Technion What is Subdivision?  Subdivision is a process in which a poly-line/mesh is.
1 Spherical manifolds for hierarchical surface modeling Cindy Grimm.
3D Object Representations
The Variety of Subdivision Schemes
Generalization of (2n+4)-point approximating subdivision scheme
Meshing of 3-D Data Clouds for Object Description
Mesh Parameterization: Theory and Practice
Multiresolution Meshes for 3-D Object Description
Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.
Presentation transcript:

Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type Matthias Eck Hugues Hoppe Matthias Eck Hugues Hoppe University of Darmstadt * Microsoft Research SIGGRAPH 96 * now at ICEM Systems S

Surface reconstruction points P surface reconstruction surfaceS n Reverse engineering n Traditional design (wood,clay) n Virtual environments

smooth B-spline Previous work subdivision implicit meshes simple surface topological type [Schumaker93], … arbitrary [Sclaroff-Pentland91],... - [Schmitt-etal86],[Forsey-Bartels95],... [Hoppe-etal92], [Turk-Levoy94],... [Moore-Warren91],[Bajaj-etal95] [Hoppe-etal94] [Krishnamurthy-96],[Milroy-etal95],... B-spline[Krishnamurthy-96], [Milroy-etal95],... arbitrary

Problem statement points P reconstruction procedure B-spline surface S n automatic procedure n surface of arbitrary topological type S smooth  G 1 continuity S smooth  G 1 continuity error tolerance  error tolerance 

Main difficulties S: arbitrary topological type single B-spline patch N 3 Difficulties: 1) Obtaining N 2) Parametrizing P over N 3) Fitting with G 1 continuity  require network N of B-spline patches

Comparison with previous talk Krishnamurthy-LevoyEck-Hoppe patch network N parametrized P continuity curve painting automaticpartitioning hierarchicalremeshing harmonic maps stitching step G 1 construction

Overview of our procedure 5 steps: 5 steps: 1) Initial parametrization of P over mesh M 0 2) Reparam. over triangular complex K  3) Reparam. over quadrilateral complex K ÿ 4) B-spline fitting 5) Adaptive refinement

(1) Find an initial parametrization a) construct initial surface: dense mesh M 0 b) parametrize P over M 0 P [Hoppe-etal92] Using: [Hoppe-etal93] M0M0M0M0

(2) Reparametrize over domain K  Use parametrization scheme of [Eck-etal95]: Use parametrization scheme of [Eck-etal95]: M0M0M0M0 a) partition M 0 into triangular regions partitioned M 0 base mesh K  b) parametrize each region using a harmonic map

Harmonic map [Eck-etal95] planar triangle triangular region map minimizing metric distortion

Reparametrize points M0M0M0M0 KKKK using harmonic maps

(3) Reparametrize over K ÿ Merge faces of K  pairwise Merge faces of K  pairwise n cast as graph optimization problem KKKK KÿKÿKÿKÿ

Graph optimization two  regions planar square For each pair of adjacent  regions, let edge cost = harmonic map “distortion” For each pair of adjacent  regions, let edge cost = harmonic map “distortion” harmonic map n Solve MAX-MIN MATCHING graph problem

KÿKÿKÿKÿ reparametrize P using harmonic maps

(4) B-spline fitting Use surface spline scheme of [Peters94]: Use surface spline scheme of [Peters94]: n G 1 surface n tensor product B-spline patches n low degree l Other similar schemes [Loop94], [Peters96], … [Loop94], [Peters96], …

Overview of [Peters94] scheme MxMxMxMx 2 Doo-Sabin subdiv. affineconstruction McMcMcMc dfdfdfdfS B-spline bases KÿKÿKÿKÿ Fitting using [Peters94] scheme optimization MxMxMxMxaffine (Details: linear constraints, reprojection, fairing, …)

(5) Adaptively refine the surface Goal: make P and S differ by no more than  Goal: make P and S differ by no more than  Strategy: adaptively refine K ÿ Strategy: adaptively refine K ÿ 4 face refinement templates KÿKÿKÿKÿ K#K#K#K# S#S#S#S#  : 1.02%  0.74%

Reconstruction results P 20,000 points 29 patches  = 1.20% rms = 0.20% SÿSÿSÿSÿ

Reconstruction results 29 patches  = 1.20% rms = 0.20% 156 patches  = 0.27% rms = 0.03%

Approximation results S0S0S0S0 70,000 triangles P 30,000 points S#S#S#S# 153 patches  = 1.44% rms = 0.19%

Analysis Krishnamurthy-LevoyEck-Hoppe patch network N parametrized P continuity curve painting automaticpartitioning hierarchicalremeshing harmonic maps stitching step G 1 construction refinement noyes displac. map yesno

Future work l Semi-automated layout of patch network l Allowing creases and corners in B-spline construction Error bounds on surface approximation have: d(P,S)<  want: d(S 0,S)<  Error bounds on surface approximation have: d(P,S)<  want: d(S 0,S)< 