CS61C L18 Running a Program I (1) Garcia, Spring 2007 © UCB Gaze-controlled UI!  Researchers at Stanford have designed a system that allows a user to.

Slides:



Advertisements
Similar presentations
1 Lecture 4: Procedure Calls Today’s topics:  Procedure calls  Large constants  The compilation process Reminder: Assignment 1 is due on Thursday.
Advertisements

Wannabe Lecturer Alexandre Joly inst.eecs.berkeley.edu/~cs61c-te
Lecture 8: MIPS Instruction Set
CS61C L11 Linker © UC Regents 1 CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson
8.
Compiling, Assembling, Loading, Linking (CALL) I (1) Fall 2005 Lecture 09: Program Translation.
1 IKI10230 Pengantar Organisasi Komputer Kuliah no. 09: Compiling-Assembling-Linking Sumber: 1. Paul Carter, PC Assembly Language 2. Hamacher. Computer.
1 Starting a Program The 4 stages that take a C++ program (or any high-level programming language) and execute it in internal memory are: Compiler - C++
Lec 9Systems Architecture1 Systems Architecture Lecture 9: Assemblers, Linkers, and Loaders Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some.
Instructor: Justin Hsia 7/08/2013Summer Lecture #81 CS 61C: Great Ideas in Computer Architecture Running a Program.
Assembly Process. Machine Code Generation Assembling a program entails translating the assembly language into binary machine code This requires more than.
 Procedures (subroutines) allow the programmer to structure programs making them : › easier to understand and debug and › allowing code to be reused.
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 19 – Running a Program II (Compiling, Assembling, Linking, Loading) Researchers.
CS61C L18 Running a Program I (1) Garcia, Spring 2007 © UCB Router Security Hole!  Huge security hole has been found – if you have a home router, crackers.
CS61C L14 Introduction to MIPS: Instruction Representation II (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L13 CALL (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #13: CALL Andy Carle.
CS61C L18 Running a Program I (1) Garcia, Fall 2006 © UCB Security hole finder  Google’s just-released new /* Code Search */, which allows you to specify.
CS61C L14 MIPS Instruction Representation II (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L14Introduction to MIPS: Instruction Representation II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L20 Synchronous Digital Systems (1) Garcia, Fall 2006 © UCB Blu-ray vs HD-DVD war over?  As you know, there are two different, competing formats.
CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia
CS61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia © UCB Lecturer PSOE Dan Garcia
CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia
MIPS Assembler Programming
CS 61C L14Introduction to MIPS: Instruction Representation II (1) Garcia, Spring 2004 © UCB Roy Wang inst.eecs.berkeley.edu/~cs61c-tf inst.eecs.berkeley.edu/~cs61c.
Instruction Representation II (1) Fall 2005 Lecture 10: Instruction Representation II.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 19 – Running a Program II (Compiling, Assembling, Linking, Loading) I’m.
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 16 – Running a Program (Compiling, Assembling, Linking, Loading) Highlights:
CS61C L13 CALL I (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #13 – Compiling,
CS61C L20 Synchronous Digital Systems (1) Garcia, Spring 2007 © UCB Disk failures 15x specs!  A recent conference reveals that drives fail in real life.
Cs 61C L10 Start.1 Patterson Spring 99 ©UCB CS61C Starting a Program Lecture 10 February 19, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Hao Ji.
CS61C L18 Running a Program I (1) Garcia, Fall 2006 © UCB Berkeley beat-down  #10 Cal bears ate the OU ducks They’ve scored 35, 42, 42, 49, 41.
CS61C L14 MIPS Instruction Representation II (1) Garcia, Fall 2006 © UCB Intel: 80 cores/chip in 5 yrs!  At their developer’s forum in SF on Tuesday,
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 MIPS Instruction Representation II IBM wants to use “self-assembling”
Computer Architecture and Design – ECEN 350 Part 4 [Some slides adapted from M. Irwin, D. Paterson and others]
CS61C L13 Compiling, Linking, and Loading (1) Pearce, Summer 2010 © UCB inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 13 – Running.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 18 – Running a Program I (Compiling, Assembling, Linking, Loading) Researchers.
CDA 3101 Fall 2013 Introduction to Computer Organization Pointers & Arrays MIPS Programs 16 September 2013.
© Janice Regan, CMPT 300, May CMPT 300 Introduction to Operating Systems Memory: Relocation.
April 23, 2001Systems Architecture I1 Systems Architecture I (CS ) Lecture 9: Assemblers, Linkers, and Loaders * Jeremy R. Johnson Mon. April 23,
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /29/2013 Lecture 13: Compile-Link-Load Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER SCIENCE.
CS 61C L3.2.2 Floating Point 2 (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture Floating Point II & Linking Kurt Meinz.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 16 – Running a Program (Compiling, Assembling, Linking, Loading) Research shows laptops.
8.
CENG 311 Starting a Program. Review (1/2) °IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with +/- infinity, Not-a-Number (Nan),
The Assembly Process Computer Organization and Assembly Language: Module 10.
CS 61C: Great Ideas in Computer Architecture Running a Program - CALL (Compiling, Assembling, Linking, and Loading) 1 Instructors: Nick Weaver & Vladimir.
CS 61C: Great Ideas in Computer Architecture CALL continued ( Linking and Loading) 1 Instructors: Nicholas Weaver & Vladimir Stojanovic
LECTURE 3 Translation. PROCESS MEMORY There are four general areas of memory in a process. The text area contains the instructions for the application.
CS 110 Computer Architecture Lecture 7: Running a Program - CALL (Compiling, Assembling, Linking, and Loading) Instructor: Sören Schwertfeger
Binding & Dynamic Linking Presented by: Raunak Sulekh(1013) Pooja Kapoor(1008)
1 Computer Architecture & Assembly Language Spring 2001 Dr. Richard Spillman Lecture 10 –Assembly V.
Lecture 3 Translation.
faculty “re-imagine” ugrad education
Computer Architecture & Operations I
IT 251 Computer Organization and Architecture
Lecture 6: Assembly Programs
Instructor: Justin Hsia
Topic 2e High-Level languages and Systems Software
Lecturer PSOE Dan Garcia
There is one handout today at the front and back of the room!
CALL & Pthread.
Green Subscription Based PC Announced
Computer Organization and Design Assembly & Compilation
Lecturer SOE Dan Garcia
10/6: Lecture Topics C Brainteaser More on Procedure Call
Program Assembly.
Presentation transcript:

CS61C L18 Running a Program I (1) Garcia, Spring 2007 © UCB Gaze-controlled UI!  Researchers at Stanford have designed a system that allows a user to “click links, highlight text, and scroll” simply by looking at the screen. Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 19 – Running a Program II aka Compiling, Assembling, Linking, Loading Hi to Carlos Restrepo from Houston, TX… (“thanks to UC Berkeley for this!”)

CS61C L18 Running a Program I (2) Garcia, Spring 2007 © UCB Review C program: foo.c Compiler Assembly program: foo.s Assembler Linker Executable(mach lang pgm): a.out Loader Memory Object(mach lang module): foo.o lib.o

CS61C L18 Running a Program I (3) Garcia, Spring 2007 © UCB Object File Format (review) object file header: size and position of the other pieces of the object file text segment: the machine code data segment: binary representation of the data in the source file relocation information: identifies lines of code that need to be “handled” symbol table: list of this file’s labels and data that can be referenced debugging information A standard format is ELF (except MS)

CS61C L18 Running a Program I (4) Garcia, Spring 2007 © UCB Where Are We Now? C program: foo.c Assembly program: foo.s Executable(mach lang pgm): a.out Compiler Assembler Linker Loader Memory Object(mach lang module): foo.o lib.o

CS61C L18 Running a Program I (5) Garcia, Spring 2007 © UCB Linker (1/3) Input: Object Code files, information tables (e.g., foo.o,libc.o for MIPS) Output: Executable Code (e.g., a.out for MIPS) Combines several object (.o) files into a single executable (“linking”) Enable Separate Compilation of files Changes to one file do not require recompilation of whole program  Windows NT source is > 40 M lines of code! Old name “Link Editor” from editing the “links” in jump and link instructions

CS61C L18 Running a Program I (6) Garcia, Spring 2007 © UCB Linker (2/3).o file 1 text 1 data 1 info 1.o file 2 text 2 data 2 info 2 Linker a.out Relocated text 1 Relocated text 2 Relocated data 1 Relocated data 2

CS61C L18 Running a Program I (7) Garcia, Spring 2007 © UCB Linker (3/3) Step 1: Take text segment from each.o file and put them together. Step 2: Take data segment from each.o file, put them together, and concatenate this onto end of text segments. Step 3: Resolve References Go through Relocation Table and handle each entry That is, fill in all absolute addresses

CS61C L18 Running a Program I (8) Garcia, Spring 2007 © UCB Four Types of Addresses we’ll discuss PC-Relative Addressing ( beq, bne ): never relocate Absolute Address ( j, jal ): always relocate External Reference (usually jal ): always relocate Data Reference (often lui and ori ): always relocate

CS61C L18 Running a Program I (9) Garcia, Spring 2007 © UCB Absolute Addresses in MIPS Which instructions need relocation editing? J-format: jump, jump and link j/jalxxxxx Loads and stores to variables in static area, relative to global pointer lw/sw$gp$xaddress What about conditional branches? beq/bne$rs$rtaddress PC-relative addressing preserved even if code moves

CS61C L18 Running a Program I (10) Garcia, Spring 2007 © UCB Resolving References (1/2) Linker assumes first word of first text segment is at address 0x (More on this later when we study “virtual memory”) Linker knows: length of each text and data segment ordering of text and data segments Linker calculates: absolute address of each label to be jumped to (internal or external) and each piece of data being referenced

CS61C L18 Running a Program I (11) Garcia, Spring 2007 © UCB Resolving References (2/2) To resolve references: search for reference (data or label) in all “user” symbol tables if not found, search library files (for example, for printf ) once absolute address is determined, fill in the machine code appropriately Output of linker: executable file containing text and data (plus header)

CS61C L18 Running a Program I (12) Garcia, Spring 2007 © UCB Static vs Dynamically linked libraries What we’ve described is the traditional way: “statically-linked” approach The library is now part of the executable, so if the library updates, we don’t get the fix (have to recompile if we have source) It includes the entire library even if not all of it will be used. Executable is self-contained. An alternative is dynamically linked libraries (DLL), common on Windows & UNIX platforms

CS61C L18 Running a Program I (13) Garcia, Spring 2007 © UCB Dynamically linked libraries Space/time issues + Storing a program requires less disk space + Sending a program requires less time + Executing two programs requires less memory (if they share a library) – At runtime, there’s time overhead to do link Upgrades + Replacing one file (libXYZ.so) upgrades every program that uses library “XYZ” – Having the executable isn’t enough anymore This does add quite a bit of complexity to the compiler, linker, and operating system. However, it provides many benefits: en.wikipedia.org/wiki/Dynamic_linking

CS61C L18 Running a Program I (14) Garcia, Spring 2007 © UCB Dynamically linked libraries The prevailing approach to dynamic linking uses machine code as the “lowest common denominator” the linker does not use information about how the program or library was compiled (i.e., what compiler or language) this can be described as “linking at the machine code level” This isn’t the only way to do it...

CS61C L18 Running a Program I (15) Garcia, Spring 2007 © UCB Administrivia…Midterm in 5 days! Review 2pm in 10 Evans Midterm 7-10pm Here Covers labs,hw,proj,lec,book through today Bring… NO backpacks, cells, calculators, pagers, PDAs 2 writing implements (we’ll provide write-in exam booklets) – pencils ok! One handwritten (both sides) 8.5”x11” paper One green sheet (make sure to correct green sheet bugs)

CS61C L18 Running a Program I (16) Garcia, Spring 2007 © UCB Upcoming Calendar Week #MonWedThu LabFri #7 This week MIPS Inst Format III (TA Brian) Running Program I Running Program Running Program II #8 Midterm week Sun 2pm Review 10 Evans SDS I Midterm 7pm-10pm HERE (2050 VLSB) SDS II (TA Valerie) SDSSDS III (TA David)

CS61C L18 Running a Program I (17) Garcia, Spring 2007 © UCB Where Are We Now? C program: foo.c Assembly program: foo.s Executable(mach lang pgm): a.out Compiler Assembler Linker Loader Memory Object(mach lang module): foo.o lib.o

CS61C L18 Running a Program I (18) Garcia, Spring 2007 © UCB Loader (1/3) Input: Executable Code (e.g., a.out for MIPS) Output: (program is run) Executable files are stored on disk. When one is run, loader’s job is to load it into memory and start it running. In reality, loader is the operating system (OS) loading is one of the OS tasks

CS61C L18 Running a Program I (19) Garcia, Spring 2007 © UCB Loader (2/3) So what does a loader do? Reads executable file’s header to determine size of text and data segments Creates new address space for program large enough to hold text and data segments, along with a stack segment Copies instructions and data from executable file into the new address space

CS61C L18 Running a Program I (20) Garcia, Spring 2007 © UCB Loader (3/3) Copies arguments passed to the program onto the stack Initializes machine registers Most registers cleared, but stack pointer assigned address of 1st free stack location Jumps to start-up routine that copies program’s arguments from stack to registers and sets the PC If main routine returns, start-up routine terminates program with the exit system call

CS61C L18 Running a Program I (21) Garcia, Spring 2007 © UCB Peer Instruction Which of the following instr. may need to be edited during link phase? Loop: lui $at, 0xABCD ori $a0,$at, 0xFEDC jal add_link # B bne $a0,$v0, Loop # C ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT # A }

CS61C L18 Running a Program I (22) Garcia, Spring 2007 © UCB Peer Instruction Answer ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT data reference; relocate subroutine; relocate PC-relative branch; OK Which of the following instr. may need to be edited during link phase? Loop: lui $at, 0xABCD ori $a0,$at, 0xFEDC jal add_link # B bne $a0,$v0, Loop # C # A }

CS61C L18 Running a Program I (23) Garcia, Spring 2007 © UCB Things to Remember (1/3) C program: foo.c Assembly program: foo.s Executable(mach lang pgm): a.out Compiler Assembler Linker Loader Memory Object(mach lang module): foo.o lib.o

CS61C L18 Running a Program I (24) Garcia, Spring 2007 © UCB Things to Remember (2/3) Compiler converts a single HLL file into a single assembly language file. Assembler removes pseudoinstructions, converts what it can to machine language, and creates a checklist for the linker (relocation table). This changes each.s file into a.o file. Does 2 passes to resolve addresses, handling internal forward references Linker combines several.o files and resolves absolute addresses. Enables separate compilation, libraries that need not be compiled, and resolves remaining addresses Loader loads executable into memory and begins execution.

CS61C L18 Running a Program I (25) Garcia, Spring 2007 © UCB Things to Remember 3/3 Stored Program concept is very powerful. It means that instructions sometimes act just like data. Therefore we can use programs to manipulate other programs! Compiler  Assembler  Linker (  Loader )

CS61C L18 Running a Program I (26) Garcia, Spring 2007 © UCB Bonus slides These are extra slides that used to be included in lecture notes, but have been moved to this, the “bonus” area to serve as a supplement. The slides will appear in the order they would have in the normal presentation

CS61C L18 Running a Program I (27) Garcia, Spring 2007 © UCB Big-endian and little-endian derive from Jonathan Swift's Gulliver's Travels in which the Big Endians were a political faction that broke their eggs at the large end ("the primitive way") and rebelled against the Lilliputian King who required his subjects (the Little Endians) to break their eggs at the small end. Big Endian vs. Little Endian Big Endian ADDR3 ADDR2 ADDR1 ADDR0 BYTE0 BYTE1 BYTE2 BYTE ADDR0 ADDR1 ADDR2 ADDR3 BYTE3 BYTE2 BYTE1 BYTE Little Endian ADDR3 ADDR2 ADDR1 ADDR0 BYTE3 BYTE2 BYTE1 BYTE ADDR0 ADDR1 ADDR2 ADDR3 BYTE0 BYTE1 BYTE2 BYTE Consider the number 1025 as we normally write it: BYTE3 BYTE2 BYTE1 BYTE searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211659,00.html en.wikipedia.org/wiki/Big_endian The order in which BYTES are stored in memory Bits always stored as usual. (E.g., 0xC2=0b )

CS61C L18 Running a Program I (28) Garcia, Spring 2007 © UCB Example: C  Asm  Obj  Exe  Run #include int main (int argc, char *argv[]) { int i, sum = 0; for (i = 0; i <= 100; i++) sum = sum + i * i; printf ("The sum of sq from is %d\n", sum); } C Program Source Code: prog.c “printf” lives in “libc”

CS61C L18 Running a Program I (29) Garcia, Spring 2007 © UCB Compilation: MAL.text.align2.globlmain main: subu $sp,$sp,32 sw$ra, 20($sp) sd$a0, 32($sp) sw$0, 24($sp) sw$0, 28($sp) loop: lw$t6, 28($sp) mul$t7, $t6,$t6 lw$t8, 24($sp) addu $t9,$t8,$t7 sw$t9, 24($sp) addu $t0, $t6, 1 sw$t0, 28($sp) ble$t0,100, loop la$a0, str lw$a1, 24($sp) jal printf move $v0, $0 lw$ra, 20($sp) addiu $sp,$sp,32 jr $ra.data.align0 str:.asciiz"The sum of sq from is %d\n" Where are 7 pseudo- instructions?

CS61C L18 Running a Program I (30) Garcia, Spring 2007 © UCB.text.align2.globlmain main: subu $sp,$sp,32 sw$ra, 20($sp) sd$a0, 32($sp) sw$0, 24($sp) sw$0, 28($sp) loop: lw$t6, 28($sp) mul$t7, $t6,$t6 lw$t8, 24($sp) addu $t9,$t8,$t7 sw$t9, 24($sp) addu $t0, $t6, 1 sw$t0, 28($sp) ble$t0,100, loop la$a0, str lw$a1, 24($sp) jal printf move $v0, $0 lw$ra, 20($sp) addiu $sp,$sp,32 jr $ra.data.align0 str:.asciiz"The sum of sq from is %d\n" 7 pseudo- instructions underlined Compilation: MAL

CS61C L18 Running a Program I (31) Garcia, Spring 2007 © UCB Assembly step 1: 00 addiu $29,$29, sw$31,20($29) 08 sw$4, 32($29) 0c sw$5, 36($29) 10 sw $0, 24($29) 14 sw $0, 28($29) 18 lw $14, 28($29) 1c multu $14, $14 20 mflo $15 24 lw $24, 24($29) 28 addu $25,$24,$15 2c sw $25, 24($29) 30 addiu $8,$14, 1 34 sw$8,28($29) 38 slti$1,$8, 101 3c bne$1,$0, loop 40 lui$4, l.str 44 ori$4,$4,r.str 48 lw$5,24($29) 4c jalprintf 50 add$2, $0, $0 54 lw $31,20($29) 58 addiu $29,$29,32 5c jr $31 Remove pseudoinstructions, assign addresses

CS61C L18 Running a Program I (32) Garcia, Spring 2007 © UCB Assembly step 2 Symbol Table Label address (in module)type main:0x global text loop:0x local text str:0x local data Relocation Information AddressInstr. type Dependency 0x luil.str 0x orir.str 0x cjalprintf Create relocation table and symbol table

CS61C L18 Running a Program I (33) Garcia, Spring 2007 © UCB Assembly step 3 00 addiu $29,$29, sw$31,20($29) 08 sw$4, 32($29) 0c sw$5, 36($29) 10 sw $0, 24($29) 14 sw $0, 28($29) 18 lw $14, 28($29) 1c multu $14, $14 20 mflo $15 24 lw $24, 24($29) 28 addu $25,$24,$15 2c sw $25, 24($29) 30 addiu $8,$14, 1 34 sw$8,28($29) 38 slti$1,$8, 101 3c bne$1,$0, lui$4, l.str 44 ori$4,$4,r.str 48 lw $5,24($29) 4c jal printf 50 add $2, $0, $0 54 lw $31,20($29) 58 addiu $29,$29,32 5c jr $31 Resolve local PC-relative labels

CS61C L18 Running a Program I (34) Garcia, Spring 2007 © UCB Assembly step 4 Generate object (.o) file: Output binary representation for  ext segment (instructions),  data segment (data),  symbol and relocation tables. Using dummy “placeholders” for unresolved absolute and external references.

CS61C L18 Running a Program I (35) Garcia, Spring 2007 © UCB Text segment in object file 0x x x x00000c x x x x00001c x x x x00002c x x x x00003c x x x x00004c x x x x00005c

CS61C L18 Running a Program I (36) Garcia, Spring 2007 © UCB Link step 1: combine prog.o, libc.o Merge text/data segments Create absolute memory addresses Modify & merge symbol and relocation tables Symbol Table Label Address main:0x loop:0x str:0x printf:0x000003b0 … Relocation Information AddressInstr. TypeDependency 0x luil.str 0x orir.str 0x cjalprintf …

CS61C L18 Running a Program I (37) Garcia, Spring 2007 © UCB Link step 2: 00 addiu $29,$29, sw$31,20($29) 08 sw$4, 32($29) 0c sw$5, 36($29) 10 sw $0, 24($29) 14 sw $0, 28($29) 18 lw $14, 28($29) 1c multu $14, $14 20 mflo $15 24 lw $24, 24($29) 28 addu $25,$24,$15 2c sw $25, 24($29) 30 addiu $8,$14, 1 34 sw$8,28($29) 38 slti$1,$8, 101 3c bne$1,$0, lui$4, ori$4,$4, lw $5,24($29) 4c jal add $2, $0, $0 54 lw $31,20($29) 58 addiu $29,$29,32 5c jr $31 Edit Addresses in relocation table (shown in TAL for clarity, but done in binary )

CS61C L18 Running a Program I (38) Garcia, Spring 2007 © UCB Link step 3: Output executable of merged modules. Single text (instruction) segment Single data segment Header detailing size of each segment NOTE: The preceeding example was a much simplified version of how ELF and other standard formats work, meant only to demonstrate the basic principles.