5.4 Simplex method: maximization with problem constraints of the form

Slides:



Advertisements
Similar presentations
Chapter 4 Systems of Linear Equations; Matrices
Advertisements

Standard Minimization Problems with the Dual
Nonstandard Problmes Produced by E. Gretchen Gascon.
LECTURE 14 Minimization Two Phase method by Dr. Arshad zaheer
Chapter 6 Linear Programming: The Simplex Method
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Dr. Sana’a Wafa Al-Sayegh
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Sections 4.1 and 4.2 The Simplex Method: Solving Maximization and Minimization Problems.
4.1 Slack Variables and the Simplex Method Maximizing Objective Functions Maximize the objective function subject to: What would this look like?
Chapter 4 Systems of Linear Equations; Matrices Section 2 Systems of Linear Equations and Augmented Matrics.
9.4 Linear programming and m x n Games: Simplex Method and the Dual Problem In this section, the process of solving 2 x 2 matrix games will be generalized.
Gauss – Jordan Elimination Method: Example 2 Solve the following system of linear equations using the Gauss - Jordan elimination method Slide 1.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Chapter 6 Linear Programming: The Simplex Method
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
The Simplex Algorithm An Algorithm for solving Linear Programming Problems.
Operation Research Chapter 3 Simplex Method.
1 Linear programming simplex method This presentation will help you to solve linear programming problems using the Simplex tableau.
Chapter 10: Iterative Improvement
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
LINEAR PROGRAMMING SIMPLEX METHOD.
Linear Programming - Standard Form
Learning Objectives for Section 6.2
1. The Simplex Method.
Chapter 6 Linear Programming: The Simplex Method
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Simplex Algorithm.Big M Method
THE SIMPLEX METHOD.
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to two  constraints.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Setting Up the Initial Simplex Tableau and Finding the Pivot Element Example 4.2 # 17 Produced by E. Gretchen Gascon.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Simplex Method Adapting to Other Forms.  Until now, we have dealt with the standard form of the Simplex method  What if the model has a non-standard.
4  The Simplex Method: Standard Maximization Problems  The Simplex Method: Standard Minimization Problems  The Simplex Method: Nonstandard Problems.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Mechanical Engineering Department 1 سورة النحل (78)
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.3 The student will be able to formulate the dual problem. The student.
Matrices and Systems of Equations
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan/ Department of Mathematics and CS/ 5.5 Dual problem: minimization.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
GOOD MORNING CLASS! In Operation Research Class, WE MEET AGAIN WITH A TOPIC OF :
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
5.5 Dual problem: minimization with problem constraints of the form Associated with each minimization problem with constraints is a maximization problem.
Chapter 4 Systems of Linear Equations; Matrices
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
Linear Algebra Lecture 4.
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Chapter 4 Linear Programming: The Simplex Method
The Simplex Method: Nonstandard Problems
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
Copyright © 2019 Pearson Education, Inc.
9.3 Linear programming and 2 x 2 games : A geometric approach
Presentation transcript:

5.4 Simplex method: maximization with problem constraints of the form The procedures for the simplex method will be illustrated through an example. Be sure to read the textbook to fully understand all the concepts involved.

Example: We will solve the same problem that was presented earlier, but this time we will use the simplex method. We wish to maximize the Profit function subject to the constraints below. The method introduced here can be used to solve larger systems that are more complicated.

Introduce slack variables; rewrite objective function First step is to rewrite the system without the inequality symbols and introduce the slack variables, and

Represent linear system using matrix The variable y was replaced the variable

Determine the pivot element In the last row, we see the most negative element is -10. Therefore, the column containing -10 is the pivot column. To determine the pivot row, we divide the coefficients above the -10 into the numbers in the rightmost column and determine the smallest quotient. Since 160 divided by 8 is 20 and 180 divided by 12 is 15, the constant 12 becomes the pivot element.

Using the pivot element and elementary row operations 1.Divide row 2 by 12 to get a 1 in the position of the pivot element. 2. Obtain zeros in the other two positions of the pivot column. 3. x2 becomes the entering variable and s2 exits.

Find the next pivot element and repeat the process The process must continue since the last row of the matrix contains a negative value ( -5/3) We use the same procedure to find the next pivot element. Divide 15 by 1/3 to obtain 45. Divide 7.5 by 1 to obtain 7.5. Since 7.5 is less than 45, our next pivot element is 1. The entering variable of x1replaces the exiting variable s1. x1 enters, and s1 exits

Obtain zeros in the remaining two entries of the pivot column: 1. Multiply row 1 by 5/3 and add the result to row 3. Replace row 3 by that sum. 2. Multiply row 1 by -1/3 and add result to row 2. Replace row 2. s

Find the solution Since the last row of the matrix contains no negative numbers, we can stop the procedure and find the solution. IF the slack variables are assigned a value of zero, then we have x= 7.5 and y = x2=12.5. This is the same solution we obtained geometrically.