The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.

Slides:



Advertisements
Similar presentations
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Advertisements

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Impact of Jet Feedback on H 2 and Star Formation in Radio Galaxies Patrick Ogle (Caltech, Spitzer Science Center) R. Antonucci, C. Leipski, Phil Appleton,
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K. Cleary 1, C.R. Lawrence 1, J.A. Marshall 2,
Properties of high redshift galaxies from 24 μm images Paola Santini Università di Roma “La Sapienza” Osservatorio Astronomico di Roma Scuola nazionale.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Optimal Photometry of Faint Galaxies Kenneth M. Lanzetta Stony Brook University.
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
UV to Mid-IR SEDs of Low Redshift Quasars Zhaohui Shang (Tianjin Normal University/University of Wyoming) Michael Brotherton, Danny Dale (University of.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
“false-color” keV X-ray image of the Bootes field A large population of mid-infrared selected, obscured AGN in the Bootes field Ryan C. Hickox Harvard-Smithsonian.
The SEDs of Interacting Galaxies Lauranne Lanz Nicola Brassington, Andreas Zezas, Howard A. Smith, Matthew L. N. Ashby, Elisabete da Cunha, Christopher.
Cambridge, September 9th 2004 Spitzer discovery of luminous infrared galaxies at 1
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
The Properties of LBGs at z>5 Matt Lehnert (MPE) Malcolm Bremer (Bristol) Aprajita Verma (MPE) Natascha Förster Schreiber (MPE) and Laura Douglas (Bristol)
Spitzer Observations of Submm/Mm/Radio-Selected Galaxies Eiichi Egami (Univ. of Arizona) MIPS team: E. Le Floc'h, C. Papovich, P. Perez- Gonzalez, G. Rieke,
A multi-wavelength view of galaxy evolution with AKARI Stephen Serjeant 29 th February 2012.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
An Initial Look at the FIR-Radio Correlation within Galaxies using Spitzer Eric Murphy (Yale) Co-Investigators George Helou (SSC/IPAC) Robert Braun (ASTRON)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Alexandra Pope (UMass Amherst) JWST Workshop – STScI Baltimore June 8, 2011 Mid-Infrared Observation of High Redshift Galaxy Evolution.
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
THE FAR-INFRARED FIR = IRAS region ( micron) TIR = micron (1 micron = 1A/10^4) Silva et al Lambda (micron) Log λ L.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Probing the properties of Luminous IR Galaxies with Spitzer/IRS V. Charmandaris (Univ. of Crete & Cornell Univ.) IRS ULIRG team: J. Houck(PI), L. Armus,
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Star formation at intermediate scales: HII regions and Super-Star Clusters M. Sauvage, A. Contursi, L. Vanzi, S. Plante, T. X. Thuan, S. Madden.
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
1 The mid-infrared view of red-sequence galaxies Jongwan Ko Yonsei Univ. Observatory/KASI Feb. 28, 2012 The Second AKARI Conference: Legacy of AKARI: A.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
An Evolutionary Model of Submillimeter Galaxies Sukanya Chakrabarti NSF Fellow CFA.
Understand Galaxy Evolution with IR Surveys: Comparison between ISOCAM 15-  m and Spitzer 24-  m Source Counts as a Tool Carlotta Gruppioni – INAF OAB.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Starburst galaxies are important constituents of the universe at all accessible redshifts. However, a detailed and quantitative understanding of the starburst.
Aug 8th, 2007MAGPOP Summer School Models for source counts and background spectrum, from submm to ultraviolet ingredients for counts model at submm to.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
1 Lei Bai George Rieke Marcia Rieke Steward Observatory Infrared Luminosity Function of the Coma Cluster.
Nature of Broad Line Region in AGNs Xinwen Shu Department of Astronomy University of Science and Technology of China Collaborators: Junxian Wang (USTC)
8/18/2010 Claus Leitherer: Young Stellar Populations 1 Young Stellar Populations in the Ultraviolet Claus Leitherer (STScI)
Studying Nearby Starbursts with HST
Infrared integral field spectroscopic observations of globules (cometary knots) in the Helix Nebula (NGC 7293) Mikako Matsuura National Astronomical Observatory.
The µJy Sky and the Radio-FIR relation vs. z
The dust attenuation in the galaxy merger Mrk848
Presentation transcript:

The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith

Do we need the IR to understand star formation? Question Assumed Rhetorical (yes)

SINGS  A Spitzer infrared imaging and spectroscopic survey of 75 nearby galaxies (<~30Mpc).  Spans broad range of physical and star- formation properties.  Copious ancillary and complementary data: UV, U, V, B, R, I, H , Pa , J, H, K, sub-mm, CO 1.3mm, 18cm, 21cm, 22cm  SFRI’s, dust, PAH formation, metals, …  See Kennicutt et al., 2003 (PASP)

Outline  PAHs, masters of the mid-infrared.  Why PAHs should matter to you.  State of the templates.  The variable PAH template:  Why should it vary?  SINGS Photometry  SINGS Spectroscopy

PAHs  Large planar aromatic molecules (~100 Carbons, 10Å diameter)  Vibrational (C-C, C-H) emission bands at 3.3, 6.2, 7.7, 8.6, 11.3 μ m,…(UIB,AFE,AIB,…)

PAH Environments & Mechanisms  Origin: carbon star outflows, grain-grain collisions in shocks, “shattering” of carbonaceous dust, …  Emission: vibrational transitions responsible for MIR bands excited by wide range of radiation fields, including UV- deficient starlight from M supergiants!  Destruction: photo-ionization in hard UV radiation fields, sputtering in shocks, coagulation…

PAHs in the High-z context  Up to 30% FIR luminosity in PAH features (10% typical).  Strongest PAH features shift through MIPS 24um band at z=0.4—3.  Photometric redshifts at z=1-2 (especially without optical counterparts).  Interpretation of 15, 16, 22 & 24 μ m faint object counts in deep survey fields — GOODS, FLS, Lockman, etc.

Appetizer: A New 17µm PAH Smith et. al, 2004 L 17.1µm =0.5L 11.3µm SINGS Galaxy NGC 7331

Photometric Redshifts LeFloch et al., 2004

Devriendt, 1999 Templates Used (and re-used)  Sources of PAH templates used to date:  Theoretical/Lab PAH band models.  Few bright ISO galaxies (e.g. Arp220)  Average ISO Key Project “normal” galaxy spectrum. Chary & Elbaz, 2001 Dale et al., 2001

ISO’s Key Project Template Lu et al, 2003  ISOPhot  2.5—11.6 μ m  25”×25” aperture

Papovich et al., 2004 Deep 24 μ m counts Fitting the Number Counts Slight Deviations in MIR PAH shape  Large shifts in inferred dust properties, SFRs, and luminosities! Lagache et al., 2004

Is the PAH Spectrum Constant?  Typical Argument: 1.PAH molecules are photo-excited by single photons to T>100K. 2.Insensitive to radiation field. 3.Uniform IR emission spectrum.

Is the PAH Spectrum Constant?  PAH Formation, Excitation & Destruction mechanisms very poorly understood.  Large range in mixture of PAH molecular weights: C N H M  Neutral vs Charged…  Strong feature variations with metallicity: Z   H/C   11.3 μ m strong. ―BUT― Low-Z starbursts: Engelbracht, 2005 Z  /5

SINGS Photometry  24 μ m is an excellent tracer of ionizing photons (Pa-  ), and SFR.  8 μ m variable, not good SF tracer: Under(over)-luminous in high (low) ionized radiation fields.  UV tracing evolved, Myr populations (lower SFRD=lower SN feedback) Calzetti et al., 2005 M51  Using 8 μ m as PAH proxy (with 24 μ m, Pa- 

SINGS Photometry  Full Spatially Resolved SEDs Dale et al., 2005 M81

SINGS Photometry  Global SINGS Infrared SEDs Dale et al., 2005 Low-Z: 8 μ m deficient

The SINGS Template Approach  Spectrally map areas centered on nucleus and extra-nuclear (H II, etc.) regions.  Native spatial sampling of pc.  Average over physically matched spatial regions (e.g. 1kpc, ¼kpc, etc.).  Quantify variations both within and among galaxies in our sample.  Ultimate goal: tie PAH variations consistently into FIR photometric SED models.

8.0µm IRS Spectral Mapping 5—15 μ m

8.0µm IRS Spectral Mapping 15—38 μ m

Factors of ~2 variations in PAH band relative strengths and equivalent widths! M51, inner few kpc

Variations among galaxies  SINGS First delivery:

Summary  Accurate understanding of PAH spectrum crucial to modeling high-redshift sources.  SINGS offers a unique spatially resolved spectral dataset ideal for studying variations in the PAH emission spectrum.  SINGS Photometry hinting at strong spatial variability of 8 PAH.  Large variations of PAH strength ratios and equivalent widths (factor of 2x) on sub-kpc scales in many galaxies.  Averaging over few kpc smooths variations, but significant global differences remain.

M51 Galex 1500Å IRAC 3.6µm IRAC 8.0µm

SINGS Sample  Large range of luminosity, Z/Z , morphological type, SFR, gas/star content, IR activity,...

SINGS IRS Spectral Mapping 14-37µm 5-8µm 7-15µm 10-20µm 19-37µm  All IRS Modules  Uniform mapping strategy: maximize useful overlap.  Build up 3D spectral cubes.  1.5—5” spatial resolution: 10s—100s pc