If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

SINE AND COSINE FUNCTIONS
Operations on Functions
Solving Quadratic Equations.
Applications of Quadratic Equations. The top of a coffee table is 3 metres longer than it is wide and has an area of 10 square metres. What are the dimensions.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
VECTORS.
?v=cqj5Qvxd5MO Linear and Quadratic Functions and Modeling.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
This presentation was found at We made some minor formatting changes on slides because of overlapping material, and added this slide.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
Polynomial Functions.
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Graphing Techniques: Transformations Transformations Transformations
Polynomial Functions.
INVERSE FUNCTIONS.
Operations on Functions
INVERSE FUNCTIONS Chapter 1.5 page 120.
Polynomial Functions.
Solving Quadratic Equations.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
exponential functions
Operations on Functions
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Rana karan dev sing.
Presentation transcript:

If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola opens down and the larger the  a  the “narrower” the graph and the smaller the  a  the “wider” the graph.

vertical shift, moves graph vertically by k horizontal shift, moves graph horizontally by h Determines whether the parabola opens up or down and how “wide” it is We need to algebraically manipulate this to look like the form above. We’ll do this by completing the square. Add a number here to make a perfect square Subtract it here to keep things equal (can’t add a number without compensating for it and we don’t want to add it to the other side because of function notation) 99 This will factor into (x-3)(x-3) so we can express it as something squared and combine the -1 and -9 on the end. The graph of this function is a parabola Let’s look at a quadratic function and see if we can graph it.

right 3 down 10 We started with and completed the square to get it in the format to be able to graph using transformations. We can take the general quadratic equation and do this to find a formula for the vertex. What we find from doing this is on the next slide.

The x value of the vertex of the parabola can be found by computing The y value of the vertex of the parabola can be found by substituting the x value of the vertex in the function and finding the function value. Let’s try this on the one we did before: 1 (1) (-6) The vertex is then at (3, -10)

(3, -10) Let’s plot the vertex: Since the a value is positive, we know the parabola opens up. The parabola will be symmetric about a vertical line through the vertex called the axis or line of symmetry. Let’s find the y intercept by plugging 0 in for x. So y intercept is (0, -1) The graph is symmetric with respect to the line x = 3 so we can find a reflective point on the other side of the axis of symmetry. (0, -1)(6, -1) We can now see enough to graph the parabola

(3, -10) Let’s look at another way to graph the parabola starting with the vertex: We could find the x intercepts of the graph by putting f(x) (which is the y value) = 0 This won’t factor so we’ll have to use the quadratic formula. So x intercepts are (6.2, 0) and (- 0.2, 0)

A mathematical model may lead to a quadratic function. Often, we are interested in where the function is at its minimum or its maximum. If the function is quadratic the graph will be a parabola so the minimum (if it opens up) will be at the vertex or the maximum (if it opens down) will be at the vertex. We can find the x value of the vertex by computing We could then sub this value into the function to find its minimum or maximum value.

DEMAND EQUATION The price p and the quantity x sold of a certain product obey the demand equation: This is the real world domain. The equation doesn’t make sense if the quantity sold is negative (x 400) Express the revenue R as a function of x. Revenue is the amount you bring in, so it would be how much you charge (the price p) times how many you sold (the quantity x)

This is a quadratic equation and since a is negative, its graph is a parabola that opens down. It will have a maximum value then at the y value of the vertex. What is the revenue if 100 units are sold? What quantity x maximizes revenue? Since the revenue function is maximum at the vertex, we'll want to find the x value of the vertex to answer this. What is the maximum revenue? This would be the y value of the vertex

DEMAND EQUATION The price p and the quantity x sold of a certain product obey the demand equation: What price should the company charge to receive maximum revenue? Since we just found that the quantity to achieve maximum revenue was 200, we can substitute this in the price equation to answer this question.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar