1 The search for signatures of ion cyclotron resonance in the low corona Laurent Dolla Jacques Solomon Philippe Lemaire Institut d'Astrophysique Spatiale.

Slides:



Advertisements
Similar presentations
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Advertisements

Anomalous Ion Heating Status and Research Plan
Multifluid models of the solar wind Leon Ofman Catholic University of America NASA GSFC, Code 612.1, Greenbelt, MD 20771, USA.
Solar Wind Acceleration and Waves in the Corona Perspectives for a spectrometer on Solar C/Plan A L. Teriaca Max-Planck-Institut für Sonnensystemforschung.
Session A Wrap Up. He Abundance J. Kasper Helium abundance variation over the solar cycle, latitude and with solar wind speed Slow solar wind appears.
Solar Physics & Space Plasma Research Centre University of Sheffield Ionization diagnostics of solar magnetic structures Dr Gary Verth
University of Sheffield Solar Physics & upper-Atmosphere Research Group Waves & Turbulence Phenomena in Space Plasmas, Kiten 2006 MHD Wave Phenomena in.
Low-Frequency Waves Excited by Newborn Interstellar Pickup Ions H + and He + at 4.5 AU Charles W. Smith, Colin J. Joyce, Philip A. Isenberg, Neil Murphy,
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
“The Role of Atomic Physics in Spectroscopic Studies of the Extended Solar Corona” – John Kohl “High Accuracy Atomic Physics in Astronomy”, August.
ALFVEN WAVES IN A POLAR CORONAL HOLE FROM HINODE/EIS OFF LIMB OBSERVATIONS Bemporad A. & Abbo L. –
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Nanoflares and MHD turbulence in Coronal Loop: a Hybrid Shell Model Giuseppina Nigro, F.Malara, V.Carbone, P.Veltri Dipartimento di Fisica Università della.
Tools for Predicting the Rates of Turbulent Heating for Protons, Electrons, & Heavy Ions in the Solar Wind S. R. Cranmer 1, B. D. G. Chandran 2, and A.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
Capabilities of UV Coronagraphic Spectroscopy for Studying the Source Regions of SEPs & the Solar Wind John Kohl, Steven Cranmer, Larry Gardner, Jun Lin,
Atmospheric phase correction for ALMA Alison Stirling John Richer Richard Hills University of Cambridge Mark Holdaway NRAO Tucson.
A Summary of the Evidence in Favor of the Idea that the Solar Wind is Accelerated by Waves and/or Turbulence S. R. Cranmer 1 & B. D. G. Chandran 2 1 Harvard-Smithsonian.
Alfvén Waves in the Solar Corona S. Tomczyk, S. Mclntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson Science, Vol. 317, Sep., 2007.
Nour-Eddine Raouafi Magnetic and Velocity Fields in the Solar Corona Outline Polar Holes: Latest Results SUMER: The Polarimeter Conclusions.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind Q. M. Lu School of Earth and Space Science, Univ.
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
Empirical Testing of Solar Coronal and Solar Wind Models Lauren Woolsey University of Maryland - College Park (2011) Mentor: Dr. Leonard Strachan.
Title of talk SOHO-17: 10 Years of SOHO and Beyond 7-12 May 2006, Giardini Naxos, Sicily Input for Phil’s SOHO-17 talk...
1 The Connection between Alfvénic Turbulence and the FIP Effect Martin Laming, Naval Research Laboratory, Washington DC
Spectroscopic Diagnostics of Solar Wind, CME, and SEP Source Regions Imaging Workshop, NSSTC, Huntsville, AL, 9-10 November 2004 Spectroscopic Diagnostics.
Magnetic Waves in Solar Coronal Loops Ryan Orvedahl Stony Brook University Advisor: Aad van Ballegooijen Center for Astrophysics.
Incorporating Kinetic Effects into Global Models of the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
Ion Heating in the Solar Corona & Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
Physics 681: Solar Physics and Instrumentation – Lecture 25 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Two-dimensional hybrid modeling of wave heating in the solar wind plasma L. Ofman 1, and A.F. Viñas 2 1 Department of Physics, Catholic University of America,
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
The Sun and the Heliosphere: some basic concepts…
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
Probing Coronal Magnetism with Multi-wavelength Polarimetry Silvano Fineschi INAF-Torino Astrophysical Observatory, Italy 25 May, 2013, Bern (CH)
The energetics of the slow solar wind Leon Ofman, Catholic University of America, NASA GSFC, Code 612.1, Greenbelt, MD 20771, USA
Space and Astrophysics Solar B as a tool for coronal wave studies Solar B as a tool for coronal wave studies Valery M. Nakariakov University of Warwick.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
M. L. Khodachenko Space Research Institute, Austrian Academy of Sciences, Graz, Austria Damping of MHD waves in the solar partially ionized plasmas.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
A Self-consistent Model of Alfvén Wave Phase Mixing G.KIDDIE, I. DE MOORTEL, P.CARGILL & A.HOOD.
SOHO-20 “Transient events on the Sun and In the Heliosphere” – August 28, 2008, Ghent SOHO-20 “Transient events on the Sun and In the Heliosphere” – August.
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
Spectroscopic Detection of Reconnection Evidence with Solar-B II. Signature of Flows in MHD simulation Hiroaki ISOBE P.F. Chen *, D. H. Brooks, D. Shiota,
Kinetic Alfvén turbulence driven by MHD turbulent cascade Yuriy Voitenko & Space Physics team Belgian Institute for Space Aeronomy, Brussels, Belgium.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
Spectroscopic observations of CMEs Hui Tian Harvard-Smithsonian Center for Astrophysics Collaborators: Scott W. McIntosh, Steve Tomczyk New England Space.
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
A Model of the Chromosphere: Heating, Structures, and Convection P. Song 1, and V. M. Vasyliūnas 1,2 1.Center for Atmospheric Research and Department of.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
Coronal Heating due to low frequency wave-driven turbulence W H Matthaeus Bartol Research Institute, University of Delaware Collaborators: P. Dmitruk,
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Fall, 2009 Copyright © The Heliosphere: Solar Wind Oct. 08, 2009.
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
Detection of slow magnetoacoustic waves in open field regions on the Sun Dr. Eoghan O’Shea¹ Dr. Dipankar Banerjee², Prof. Gerry Doyle¹ 1. Armagh Observatory,
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 10: Scattering lines: diagnostics & results Spring 2016, Part 1 of 3: Off-limb.
Solar Wind and CMEs with the Space Weather Modeling Framework
2005 Joint SPD/AGU Assembly, SP33A–02
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
Lecture 3 Radiative Transfer
How does the solar atmosphere connect to the inner heliosphere?
Atmospheres of Cool Stars
Heavy-Ion Acceleration and Self-Generated Waves in Coronal Shocks
High-cadence Radio Observations of an EIT Wave
Presentation transcript:

1 The search for signatures of ion cyclotron resonance in the low corona Laurent Dolla Jacques Solomon Philippe Lemaire Institut d'Astrophysique Spatiale FOUR SOLAR CYCLES OF SPACE INSTRUMENTATION In honour of Philippe LEMAIRE’s Retirement

2 A search for ion cyclotron waves signatures To provide additional acceleration to the fast solar wind, a lot of models use ion cyclotron waves ( Tu et Marsch, 1997, Cranmer et al., 1999, Hu et al., 1999, Hu et al., 2000, Isenberg et al., 2001…) Two kinds of observational signatures :  Anisotropies of temperature T  /T    Preferential heating of the ions with a lower charge-to-mass ratio Solar Radii UVCS Polar coronal hole (spectroscopy) HELIOS Solar wind (in-situ) SUMER : Can we observe preferential heating in the low solar corona, above the coronal holes ?

3 Ion cyclotron Resonance and Preferential heating Preferential heating induced by the charge-to-mass ratio dependance :  low q/m are always heated first Ion cyclotron pulsation :  c  B  q/m Cyclotron resonance :  =  c - kv // (parallel wave propagation) Resonance   c2 Frequency  Ion 2 Ion 1 Coronal altitude  c1

4 Use of the linewidth : the problem of the non-thermal velocity Previous investigations of preferential heating using linewidths for solar wind acceleration : Tu et al. 98, Cranmer et al. 99 Also interesting to constrain the power in the high frequencies (turbulente cascade) Drawback : « non-thermal » velocity (  is included in the linewidth. Lots of off-limb observations with SUMER : variation of line width with the altitude attributed to the variation of  Some of those observations (Hassler et al. 90, Banerjee et al. 98, Doyle et al. 99) : increase then decrease of linewidth, or plateau, near 1.2 Rs  Alfvén wave amplitude increasing (flux conservation), then decreasing (damping  energy deposition !) Pekünlü et al. 02 : MHD calculations of damped Alfvén waves Observations with CDS : Harrison et al. 02, O’Shea et al. 03

5 Spectroscopic observations Deducing the ion temperature from the linewidth EUV Spectrometer SUMER/SOHO May 2002, Medoc Campaign #9 (not solar minimum…) : all lines observed the same day North polar coronal hole Stray light : SUMER is not optimized for off-limb observations  dazzled by the solar disc  We have developped a method to correct the profiles before the gaussian fit EIT 195 Å

6 Spectroscopic observations Correction from the stray light profile Observed spectrum = real coronal spectrum + stray light spectrum (dominated by photospheric and chromospheric lines) Ly  O I Fe X O VI C II

7 Spectroscopic observations Correction from the stray light profile Fe X O I Observed spectrum = real coronal spectrum + stray light spectrum (dominated by photospheric and chromospheric lines)

8 Spectroscopic observations Examples of the effect of the stray light correction Mg X Fe X (corrected) Si VIII 1445 : suspected blending above 150 arcsec Fe X : Subtraction of stray light spectrum also reduces the influence of the neighbouring line on the fit Si VIII O I

9 Spectroscopic observations The line width : a mix of 2 informations Instrumental width Gaussian width : (optically thin)

10 Spectroscopic observations The line width : a mix of 2 informations Temperature : thermal Doppler effect in one volume element Instrumental width Gaussian width : (optically thin) Thermal Doppler effect (one volume element) : f (v) vfvf v V th

11 Spectroscopic observations The line width : a mix of 2 informations « non-thermal velocity », or « unresolved velocity » : results from the integration over a lot of volume elements driven by fluid velocity fluctuations :  on the line of sight  on spatial and temporal scales smaller than the resolution scale Source of velocity fluctuations : Alfvén waves, turbulence ? Temperature : thermal Doppler effect in one volume element Instrumental width Gaussian width : (optically thin) Thermal Doppler effect (one volume element) : f (v) vfvf v V th -1/2 « non-thermal » velocity (integration effect)

12 Spectroscopic observations How to « deconvolve » the linewidth ? Strong hypotheses needed to set one value and deduce the other one, e.g. :  set T to deduce  : T=T ionization of each ion : irrelevant in off-limb observations ; many arguments, e.g. collision times : Electron-proton  120 s  possible decoupling ( suggested by Tu et al. 98, Doyle et al., etc.) Ion-proton  500 cyclotron times  Ionization equilibrium is questionable  set   (same for every ion), and deduce T : too sensitive to the value of  (Dolla et al. 2003, Soho 13 Proc.) « Preferential heating » : directly compute the difference of temperature with the altitude

13 How to « deconvolve » the linewidth ? Using the difference in width with the altitude Two extreme cases :  Case 1 :  = 0 or  = 0 : only a variation of temperature  absolutely independant of T or   Case 2 :  T = 0 : only a variation of the nonthermal velocity  we have to set 

14 Interpreting the difference in width between 1.06 and 1.1 Rs  Case 1 :  0 Case 2 :  0  Preferential heating by ion cyclotron waves ?  increasing  with the altitude ?  f(  )  4 km.s -1 if  =25 km.s -1 : compatible with increasing Alfvén wave amplitude with n e  1/r2 Possibility to measure Si VIII line ratio to estimate the density variation

15 Another approach (preliminary) v 2 = O VI Mg IX Na IX Mg X (q/m =0.37) Fe XII (q/m=0.2) 1242 Å : blending with Si X ? Fe X (q/m =0.16) Moving average, summing over 40 pixels (+ smoothing over 10 pixels) v 2 increase for all lines, except O VI (?) Fe X « takes » off at a lower altitude than Mg X Na IX disturbing : takes off very early, while q/m ~ 0.35

16 Conclusions Multi-ion studies are necessary to separate non-thermal and thermal velocity in the linewidth Observed decrease or plateau for the linewidth, in other works, may be due to the effect of stray light Both interpretations are consistent with the data : –preferential heating induced by ion cyclotron waves –non-thermal velocity increasing with the altitude : compatible with undamped Alfvén waves only for large wave amplitude BUT : preliminary results tend to favour preferential heating All results strongly depend on the stray light correction : need for a spectrometer with : New data sets : presence of different structures along the slit Available for a post-doc position … by next SUMmER… – small instrumental width ! – less stray light (off-limb observations)

17 « Preferential heating » : Can differences of temperature develop among ion species ? Collision time with protons Cyclotron time electrons120 s protons (q/m= 1)3 s6 · s Mg X (q/m= 0.37)1 s2 · s Fe X (q/m= 0.16)2 s4 · s Coronal Holes : B= 1 Gauss n p = n e = m -3 T p = T e = 10 6 K protons behave as a thermostat for the minor heavy ions t collision  500 t cyclotron  In case of cyclotron resonance, collisions cannot maintain thermodynamic equilibrium

18 Spectroscopic observations 1) How to interpret the coronal line widths ? Thermal Doppler broadening is dominant in the corona  the line profile reflects the velocity distribution function in one single elementary volume Integration over the observed solid angle and during the exposure time : f (v) v vfvf V th 0 0  -1/2 V th  (v th 2 + )

19 Spectroscopic observations 2) origin of the -1/2 Possible source of velocity fluctuations : fluid turbulence or Alfvén waves Above a polar coronal hole : Open magnetic field line ( Velocity field of the Alfvén wave)

20 Open magnetic field line Spectroscopic observations 2) origin of the -1/2 Possible source of velocity fluctuations : fluid turbulence or Alfvén waves Integration over :  scales smaller than the resolution scale Velocity fluctuation (projected onto the LOS) Resolution scale Above a polar coronal hole :

21 Possible source of velocity fluctuations : fluid turbulence or Alfvén waves Integration over :  scales smaller than the resolution scales  line of sight Spectroscopic observations 2) origin of the -1/2 Above a polar coronal hole : LOS depth Resolution scale

22 Spectroscopic observations 2) origin of the -1/2 Possible source of velocity fluctuations : fluid turbulence or Alfvén waves Integration over :  scales smaller than the resolution scales  line of sight  exposure time  The observed line appears broader Above a polar coronal hole : Resolution scale LOS depth

23 Are low q/m ions hotter than the others ?  The value for  is very critical in determining temperature… Assuming  0 km.s -1 Hypothesis  25 km.s -1 Temperatures ~ 1.06 R s above the coronal hole

24 Difference in temperature from 1.06 and 1.18 Rs

25 Difference in non-thermal velocity from 1.06 and 1.18 Rs

26 Spectroscopic observations Correction from the stray light profile Ni IIC I Fe X Fe XI C I C I, Ni II Observed spectrum = real coronal spectrum + stray light spectrum (dominated by photospheric and chromospheric lines)

27 Blending of Si VIII above 150 arcsec ?