Chapters 5 and 6: Ferrous and Nonferrous Metals

Slides:



Advertisements
Similar presentations
FERROUS METALS.
Advertisements

Engineering Materials Resource 4 Manufacturing Techniques.
Production Technology (IND 006) Preparatory Year, Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb Lecturer, Industrial Engineering.
Characteristics of Metals AG 221 – Metals and Welding.
From Applications and Alloys Perspective
Non-Ferrous1 CON 251 Non Ferrous Metals - Introduction Nonferrous metals and their alloys do not contain iron as a principle ingredient, although they.
UNIT 4: Ferrous and Non-Ferrous alloys Manufacturing Engineering Unit 4 Copyright © 2012 MDIS. All rights reserved. 1.
INTRODUCTION TO METALS
Ferrous Metals Non-ferrous Metals Alloys
Properties and Applications
Ferrous Metals and Alloys
CHAPTER 5 Ferrous Metals and Alloys: Production,
Chapter 5 Ferrous Alloys.
Chapter 5.   Among the most useful of all metals  Contain iron as their base metal  Carbon and alloy steels  Stainless steels  Tool & die steels.
Section 3.3 Ferrous and Nonferrous Metals
The Reactivity of A Metal and When it Was Discovered
Materials.
Metals Part 2 Manufacturing Processes, MET 1311 Dr Simin Nasseri
TYPES OF METALS.
Bachelor of Technology Mechanical
Annealing Processes All the structural changes obtained by hardening and tempering may be eliminated by annealing. to relieve stresses to increase softness,
PALESTINE UNIVERSITY BUILDING MATERIAL chapter No.#4 Steel.
PHYSICAL PROPERTIES OF MATERIALS Chapter 3. Density Melting point Specific heat Thermal conductivity Thermal expansion Electrical properties Magnetic.
By Usanee thanawutsakunchai Sasichai jaithum
Ferrous and Non-Ferrous Metals Group 5 Josh Agenbroad Joy Best Iris Gallegos Keith Griego September 19, 2005.
Romina Javadianfard Period: 3. Alloys Alloy is a solid combination of atoms of two or more metals. Alloy is a solid combination of atoms of two or more.
Metal Alloys Manufacturing Processes © 2013 Su-Jin Kim, GNU Nonferrous Alloys ( 비철금속 ) More expensive than ferrous metals. Applications: aluminium for.
Agricultural Mechanics CD Identifying Metals and Their Physical Properties Lesson A5–1.
Nonferrous Metals and Alloys
CANKAYA UNIVERSITY OFFICE OF BASIC AND ELECTIVE COURSES -ENGLISH UNIT-
Chapter 9 Characteristics of Metallic Materials. Objectives Four major classifications – ferrous,non ferrous, high temperature super alloy, and refractories.
C10. Metals.
Nonferrous Alloys. l Aluminum Alloys l Magnesium and Beryllium Alloys l Copper Alloys l Nickel and Cobalt Alloys l Titanium Alloys l Refractory and Precious.
Materials Science Introduction to Materials Properties of Materials
Ferrous and Non-Ferrous MAtErials PRESENTED BY, SHAH MEET A. CIVIL- SEM1 ENROLLMENT NO =
Metallic Materials.  Types of metallic Materials * Aluminum * Brass * Bronze * Stainless Steel * Carbon Steel * Copper.
ME Session #5 Selection of term projects Assignment#4 : Review of manufacturing processes Presentations of PDS work Material selection Questions.
Metals GROUP 2.
Steel Stainless Steel Cast Iron Copper/Brass Aluminum
Numbering and Classification of Non-ferrous metals
1 Teaching Innovation - Entrepreneurial - Global The Centre for Technology enabled Teaching & Learning, N Y S S, India DTEL DTEL (Department for Technology.
Metal Properties and Processes Design and Manufacture.
INTRODUCTION OF MATERIAL SCIENCE (SFB 2013) NUR SUHADAH BINTI OTHMAN ( )
Metals can be either ferrous or non-ferrous. Ferrous metals contain iron while non-ferrous metals do not.Metals can be either ferrous or non-ferrous.
Two main groups, Ferrous. Non-Ferrous.
Ferrous metals LAXMI INSTITUTE OF TECHNOLOGY SARIGAM LAXMI INSTITUTE OF TECHNOLOGY SARIGAM GUIDED BY, PREPARED BY, MR. ANKUR VASAVA ASST.PROFFESOR, MECH.ENGG.DEPT,
Metal Types. Objectives Know the types of metals and examples of them Know the types of metals and examples of them.
Mr. A Roberts GCSE Resistant Materials Materials and their Uses - Metal /materialsmaterials_act.shtmlhttp://
SURFACE TREATMENT AN OVERVIEW
Topic 3 Metals and their uses. Extracting metals Metals are found in the Earth’s crust They are often chemically combined with other elements – this is.
Mr. A Roberts GCSE Resistant Materials Materials and their Uses - Metal.
Metallurgy and Metal’s Physical Properties
Introduction to nonferrous metal and alloys
Metals.
Ferrous Metals Neotech Institute of Technology Vadodara.
Metals Unit 212/255 – Principles of Fabrication and Welding Technology.
FERROUS & NON FERROUS ALLOY
1 HEAT TREATMENT Prepared by: ENROLLMENT NO :
Nonferrous Metals & Alloys. Nonferrous Metals Ferrous Alloys – alloys contain iron Nonferrous Metals – metals do not contain iron such as Copper (Cu),
1 UNIT – III Ferrous and Non Ferrous Alloys. 2 3 Pure Metals and Alloys Metal that are not mixed with any other materials are known as pure metals. Metals.
Q: Where do we obtain most of our metals from?
Characteristics of Metals
Welcome back  Extracting metals
Chapters 5 and 6: Ferrous and Nonferrous Metals
Materials Science Introduction to Materials Properties of Materials
Steel.
CLASSIFICATION OF ENGINEERING MATERIALS
CHAPTER 9 Engineering Alloys 1.
Steel production Engineering alloys Engineering Materials
Selection Criteria Properties Availability Cost
Presentation transcript:

Chapters 5 and 6: Ferrous and Nonferrous Metals Group 5 Patrick Pace Michael Linley Bryan Estvanko Matthew Sallee

Ferrous Metals and Alloys CHAPTER 5 5.1-5.4 Ferrous Metals and Alloys Production - General Properties - Application

Introduction What is a ‘ferrous metal’ or ‘ferrous alloy’? It is simply a metal or alloy that contains Iron (the element ferrous) as the base (starting) metal. 26th element  Iron or Ferrous  55.85 Atomic Mass

General Categories of Ferrous Metals and Alloys Carbon and alloy steels Stainless steel Tool and Die steel Cast Irons Cast Steels **Ferrous tools first appear about 4000 to 3000 BC, made from meteoritic iron. Real ironworking started in about 1100 BC in Asia Minor, and started the Iron Age.

APPLICATION OF FERROUS (IRON) METALS / ALLOYS

5.2 Production of Iron and Steel

Raw Materials for Production Iron Ore Limestone ---------- Coke

Iron Ore Abundant, makes up 5% of earth’s crust Is not found in ‘free state’, must be found in rocks and oxides, hence Iron ore. After mining, the ore is crushed and the iron is separated, then made into pellets, balls or briquettes using binders, such as water. The pellets are typically 65% iron, and about 1” in diameter.

Coke – (…The black, legal kind) Coke is formed by heating coal to 2100*F (1150 C), then cooling it in quenching towers. You need more than Iron? Why coke is used… 1. Generates high heat, needed in order for chemical reactions in ironmaking to take place. 2. Produces CO (carbon monoxide) which reduces iron-oxide to Iron.

Lastly, Limestone Limestone (calcium carbonate) is used to remove impurities. When the metal is melted, limestone combines with impurities and floats to the top of the metal, forming slag. The slag can then be removed, purifying the iron.

Ironmaking

Raw Materials  Pig Iron The three raw materials are dumped into a blast furnace. Hot air (2000*F) is blasted into the furnace, which helps drive the chemical reaction. The coke forms CO and the CO reduces the iron oxide to iron. The slag floats to the top and the metal is transferred to molds and cools. IT IS NOW PIG IRON, ready for more iron work or steelmaking.

Blast Furnace Tuyeres (Same height as a 10 story building)

Steelmaking

Pig Iron  Steel To make steel you are simply removing more impurities, such as, manganese, silicon, carbon…, from the pig iron. Impurities are removed by re-melting the metal and adding carbon, steel scrap, and more limestone. The metal can be melted using one of three methods. Open-Hearth furnace Electric furnace Basic Oxygen furnace. (BOF)

Open-Hearth Furnace Uses a fuel to generate heat, and melt the metal.

Basic-Oxygen Furnace Fastest steelmaking process – can make 250 tons of steel / hour Melted pig iron and scrap are poured (charged) into a vessel. Fluxing agents are added, like limestone. The molten metal is blasted with pure oxygen. This produces iron oxide which then reacts with carbon to produce CO and CO2. The slag floats to the top of the metal. Higher steel quality than open hearth. Used to make plate, sheet, I-beam, tubing and channel.

Electric Furnace Uses electric arc from electrode to metal to heat and melt it. Can produce 60-90 tons of steel per day. Steel is higher quality than open-hearth and BOF

Vacuum Furnace Uses induction furnaces. Air is removed from the furnace, this removes the gaseous impurities from the molten metal. Produces very high-quality steel.

5.3 Casting Ingots

Ingots While steel is still molten, it is poured into a mold. The mold may be a square, rectangle or round. The metal becomes an “ingot” in the mold. They can weigh 100 lbs to 40 tons. The ingot will be removed from the mold and heated uniformly to be rolled or formed into a final product. HOWEVER – While the molten metal cools, or solidifies, gasses evolve and can affect the quality of the steel. This leads to three types of steel: Killed Steel, Semi-Killed Steel, and Rimmed Steel.

Killed – Semi-Killed – Rimmed Steel Killed Steel – This is a fully deoxidized steel, and thus, has no porosity. This is accomplished by using elements like aluminum to de-oxidize the metal. The impurities rise and mix with the slag. It is called killed because when the metal is poured it has no bubbles, it is quiet. Because it is so solid, not porous, the ingot shrinks considerably when it cools, and a “pipe” or “shrinkage cavity” forms. This must be cut off and scrapped.

Killed – Semi-Killed – Rimmed Steel Semi-Killed Steel: This is practically the same as killed steel, with some minor differences. It is only partially de-oxidized, and therefore, is a little more porous than killed steel. Semi-Killed does not shrink as much as it cools, so the pipe is much smaller and scrap is reduced. It is much more economical and efficient to produce.

Killed – Semi-Killed – Rimmed Steel Rimmed Steel: This is produced by adding elements like aluminum to the molten metal to remove unwanted gases. The gasses then form blowholes around the rim. Results in little or no piping. HOWEVER, impurities also tend to collect in the center of the ingot, so products or rimmed steel need to be inspected and tested. **Refining

5.4 Continuous Casting -Molten metal skips ingot step, and goes directly the furnace to a “tundish” -Metal solidifies in the mold -The metal descends @ about 1”/sec -The solidified metal then goes through ‘pinch rollers’ that determine the final form.

Benefits of Continuous Casting Costs less to produce final product Metal has more uniform composition and properties than ingot processing.

Carbon and Alloying Steel Stainless Steels Tool and Die Steels Sections 5.5 - 5.7 Carbon and Alloying Steel Stainless Steels Tool and Die Steels

Carbon and Alloying Steels Carbon and alloying steels are the most commonly used metals The structural makeup and controlled processing of these steels make them suitable for many different functions. Basic product shapes include plate, sheet, bar, wire, tube, castings, and forgings. Increasing the percentages of these elements in steels, increases the properties they impart.

Effects of Elements in Steels Different elements are added to steels to given the steel different properties. The elements pass on properties such as harden- ability, strength, hardness, toughness, wear resistance, etc. Some properties are beneficial while others are detrimental.

Effects of Elements in Steels Boron: Improves hardenability without the loss of (or even with some improvement in) machinability and formability. Calcium: Deoxidizes steels, improves toughness, and may improve formability and machinability. Carbon: improves hardenability, strength, hardness, and wear resistance; it reduces ductility, weldability, and toughness. Cerium: controls the shape of inclusions and improves toughness in high-strength low alloy steels; it deoxidizes steels. Chromium: improves toughness, hardenability, wear and corrosion resistance, and high-temperature strength; it increases the depth of the hardness penetration resulting from heat treatment by promoting carburization. Cobalt: improves strength and hardness at elevated temperatures.

Effects of Elements in Steels Copper: improves resistance to atmospheric corrosion and, to a lesser extent, increases strength with little loss in ductility; it adversely affects the hot-working characteristics and surface quality. Lead: improves machinability; it causes liquid-metal embrittlement. Magnesium: has the same effects as cerium. Manganese: improves hardenability, strength, abrasion resistance, and machinability; it deoxidizes the molten steel, reduce shot shortness, and decreases weldability. Molybdenum: improves hardenability, wear resistance, toughness, elevated-temperature strength, creep resistance, and hardness; it minimizes temper embrittlement.

Effects of Elements in Steels Nickel: improves strength, toughness, and corrosion resistance; it improves hardenability. Niobium (columbium): imparts fineness of grain size and improves strength and impact toughness; it lowers transition temperature and may decrease hardenability. Phosphorus: improves strength, hardenability, corrosion resistance, and machinability; it severely reduces ductility and toughness. Selenium: improves machinability. Silicon: improves strength, hardness, corrosion resistance, and electrical conductivity; it decreases magnetic-hysteresis loss, machinability, and cold formability.

Effects of Elements in Steels Sulfur: Improves machinability when combined with manganese; it lowers impact strength and ductility and impairs surface quality and weldability. Tantalum: has effects similar to those of niobium. Tellurium: improves machinability, formability, and toughness. Titanium: improves hardenability; it deoxidizes steels. Tungsten: has the same effects as cobalt. Vanadium: improves strength, toughness, abrasion resistance, and hardness at elevated temperatures; it inhibits grain growth during heat treatment. Zirconium: has the same effects as cerium

Residual Elements During the processing of steels some residual elements remain in the medal. These residuals are trace elements that are unwanted due to their detrimental properties but cannot be extracted completely. Some of these residual elements include: antimony, arsenic, hydrogen, nitrogen, oxygen, and tin. Molten Steel

Carbon Steels Carbon steels are group by their percentage of carbon content per weight. The higher the carbon content the greater the hardness, strength and wear resistance after heat treatment. Low-carbon steel, also called mild steels, has less than 0.30% carbon. Used in everyday industrial products like bolts, nuts, sheet, plate and tubes. High Carbon Steel Nails

Carbon Steels Medium-carbon steel has 0.30% to 0.60% carbon. Used for jobs requiring higher strength such as machinery, automotive equipment parts, and metalworking equipment. High-carbon steel has more than 0.60% carbon. Used parts that require the highest strength, hardness, and wear resistance. Once manufactured they are heat treated and tempered

Alloy Steels Alloy steels are steels that contain significant amounts of alloying elements. High strength low alloy steels Microalloyed steels Nanoalloyed steels

Alloy Steels High-strength, low-alloy steels (HSLA) steels were developed to improve the ratio of strength to weight. Commonly used in automobile bodies and in the transportation industry (the reduced weight makes for better fuel economy ). Microalloyed steels Provide superior properties without the use of heat treating. When cooled carefully these steels develop enhanced and consistent strength.

Alloy Steels Nanoalloyed steels have extremely small grain size (10-100 nm). Since their synthesis is done at an atomic level their properties can be controlled specifically.

Stainless Steels Stainless steels are primarily know for their corrosion resistance, high strength, and ductility and chromium content.

Stainless Steels The reason for the name stainless is due to the fact that in the presence of oxygen, the steel develops a thin, hard, adherent film of chromium. Even if the surface is scratched, the protective film is rebuilt through passivation. For passivation to occur there needs to be a minimum chromium content of 10% to 12% by weight.

Stainless Steels Stainless steels tend to have lower carbon content since increased carbon content lowers the corrosion resistance of stainless steels. Since the carbon reacts with chromium it decreases the available chromium content which is needed for developing the protective film.

Stainless Steels Using stainless steels as reinforcing bars, has become a new trend, in concrete structures such as highways buildings and bridges. It is more beneficial than carbon steels because it is resistant to corrosion from road salts and the concrete itself. Rebar corrosion in concrete

Tool and Die Steels Tool and die steels are alloyed steels design for high strength, impact toughness, and wear resistance at normal and elevated temperatures. High-speed steels Maintain their hardness and strength at elevated operating temperatures. There are two basic types the M-series and T-series

Tool and Die Steels M-series contain 10 % molybdenum and have higher abrasion resistance than T- series T- Series contain 12 % to 18 % tungsten. They undergo less distortion in heat treatment and are less expensive than the M-series. M- series steel drill bits coated with titanium

Tool and Die Steels Dies are tools used for drawing wire, and for blanking, bending, cutting, machine forging, and embossing. . H-series (Hot-working steels) for use at elevated temperatures. They have high toughness and high resistance to wear and cracking. S-series (shock resisting steels) designed for impact toughness.

Chapter 6: Nonferrous Metals and Alloys 6.1 Introduction 6.2 Aluminum 6.3 Magnesium 6.4 Copper 6.5 Nickel 6.6 Superalloys 6.7 Titanium 6.8 Refractory Metals

Introduction Nonferrous metals and alloys Common- aluminum, copper, and magnesium High-strength high-temperature alloys include: tungsten, tantalum, and molybdenum. Higher cost than ferrous metals but have good properties such as: Corrosion resistance High thermal and electrical conductivity Low density and ease of fabrication

Aluminum and Aluminum Alloys Most abundant metallic element (8% crust) High strength to weight ratio Resistant to corrosion High thermal and electrical conductivity Nonmagnetic Easy formability and machinability

UNS UNS-Unified Numbering System A common system used everywhere to describe the condition of a metal or an alloy. Generally has 4 numbers and a temper designation Temper designation tells the condition of the material. Example: 2024 wrought aluminum is A92024

UNS-Wrought Aluminum Form: 1XXX 1st #- major alloying element 2nd #- modifications of alloy 3rd & 4th #- minimum amount of aluminum in the alloy EX: 1050 is aluminum with minimum 99.50% Al Ex: 1090 shows a minimum of 99.90% Al

UNS-Cast Aluminum Form: 1XX.X 2nd & 3rd #- minimum amount of aluminum 4th #- Product form

Temper Designation F: as fabricated (by cold or hot working or by casting) O: Annealed (from the cold worked or cast state) H: strain hardened by cold working (for wrought products only) T: heat treated W: solution treated only (unstable temper)

Magnesium and Magnesium Alloys Lightest of all metals Not sufficiently strong in pure form but alloyed to increase strength. Uses Aircraft and missile components, bikes, luggage, portable power tools… Designations for magnesium A. 1 or 2 prefix letters B. 2 or 3 numbers

Copper and Copper Alloys First produced in 4000 BC Properties: Best conductors of electricity and heat, good corrosion resistance, and easily processed. Uses: Electronics, springs, cartridges, plumbing, heat exchangers, and marine equipment. Common alloys: Brass, Bronze, Beryllium copper

Nickel and Nickel Alloys Major alloying element for strength, toughness, and corrosion resistance. Offers a wide range of strength at different temperatures. Uses: High temperature applications, food handling, chemical processing, coins, marine applications. Magnetic properties-electromagnetic Used in solenoids

Superalloys Used in high temperature applications and have good resistant properties to: Mechanical and thermal fatigue, thermal shock, creep, and erosion at elevated temperatures Examples: jet engines, gas turbines, and reciprocating engines Max temp.- 1000°C (1800°F) Max temp. (non load)- 1200°C (2200°F) Identified by trade names or by a special numbering system

Titanium and Titanium Alloys Has the highest strength to weight ratio Uses: Jet engines, race cars, golf clubs, submarines, and armor plates. Pure state: strong and light Alloys: improved workability, strength, hardenability High cost due to long production process

Refractory Metals and Alloys 4 refractory metals: Molybdenum, Niobium, Tungsten, and Tantlum. Called refractory because of their high melting points. Discovered about 200 years ago. Used in steels and superalloys because they maintain their strength at high temperatures. Temperature range of 1100 to 2200° C (2000 to 4000° F).

Molybdenum (Mo) A silvery-white metal. Discovered in the 18th century. Has high melting point, high modulus of elasticity, good resistance to thermal shock, and good electrical and thermal conductivity. Needs a protective coating because of low resistance to oxidation at high temperatures. Used in solid-propellant rockets, jet engines, honeycomb structures, electronic computers, heating elements, and dies for die casting. Principle alloying element for titanium and zirconium.

Niobium (Nb) First identified in 1801. Also known as Columbium. Has good ductility and formability and has greater oxidation resistance than other refractory metals. Used in rockets and missiles and in nuclear, chemical, and superconductor applications. Processed from ores by reduction and refinement and from powder by melting and shaping into ingots.

Tungsten (W) First identified in 1781. Most abundant of all refractory metals. Highest melting point of any metal at 3410° C (6170° F). High strength at high temperatures. Has high density (which makes it brittle at low temperatures). Used in hottest part of missiles and rockets, weldinging electrodes, spark-plug electrodes, and the wire filament in incadescent bulbs. Processed from ore concentrates by chemical decomposition and is then reduced.

Tantalum (Ta) Characterized by its high melting point (3000° C, 5425° F), high density, good ductility and resistance to corrosion. Used mainly in electrolytic capacitors and various electrical, electronic and chemical industries. Sometimes used in thermal applications such as in furnaces and acid-resistant heat exchanges. Processed from ores by reduction and refinement and from powder by melting and shaping into ingots.

Beryllium (Be) Steel grey in color. High strength-to-weight ratio. Used in rocket nozzles, space and missile structures, aircraft disc brakes, and precision instruments and mirrors. Low neutron absorption. Alloy element of copper and nickel. Toxic. Its dust and fumes should not be inhaled.

Zirconium (Zr) Silvery in appearance. Good strength and ductility at elevated temperatures. Good corrosion resistance because of adherent oxide film. Used in electronic components and in nuclear-power reactor applications. Low neutron absorption.

Low-Melting Alloys Relatively low melting points. Consists of lead, zinc, and tin.

Lead (Pb) High density, resistance to corrosion, softness, low strength, good ductility and workability. Alloying it with antimony and tin make it usable in piping, collapsible tubing, bearing alloys, cable sheathing, roofing and lead-acid storage batteries. Also used for damping sound and vibrations, radiation shielding against x-rays, ammunition, as weights, and in the chemical industry. Poisonous; major efforst are being made to replace it with other elements. Source mineral is galena (PbS).

Zinc (Zn) Bluish-white in color. 4th most utilized metal in industry. Not developed until 18th century. Used for galvanizing iron, steel sheet, and wire and as an alloy base for casting. Alloyed with aluminum, copper, and magnesium. Zinc-based alloys are used for making fuel pumps and grills for automobiles, components for household appliances, kitchen equipment, various machinery parts and photoengraving equipment. Used in superplastic alloys. Comes from a principle source mineral called zinc sulfide.

Tin (Sn) Silvery-white, lustrous metal. Developed in the 15th century. Used mainly as a protective coating on steel sheets called tin plating which is used to make tin cans. Low shear strength. Unalloyed tin is used as a lining material for water distillation plants and as a molten layer of metal over which plate glass is made. Tin is usually alloyed with copper, antimony, lead, titanium, and zirconium. Can be used in journal-bearing materials because of its low friction coefficient.

Also known as Noble Metals (Gold, Silver, and Platinum) Precious Metals Also known as Noble Metals (Gold, Silver, and Platinum)

Gold (Au) Soft and ductile. Has good corrosion resistance and any temperature. Used in jewelry, coinage, reflectors, gold leaf for decorative purposes, dental work, electroplating, and electrical contacts and terminals.

Silver (Ag) Ductile Highest electrical and thermal conductivity of any metal. Used as tableware, jewelry, coinage, electroplating, photographic film, electrical contacts, solders, bearing linings and food and chemical equipment. Sterling silver is an allow of silver and 7.5% copper.

Platinum Soft, ductile. Grayish-white metal. Good corrosion resistance at any temperature. Used as electrical contacts, for spark-plug electrodes, as catalysts for automobile pollution-control devices, in filaments, in nozzles as jewelry, and in dental work.

Shape-Memory Alloys Can be deformed into any shape at room temperature but when heated will return to original shape. A typical one is 55% Nickel – 45% titanium. Used as sensors, eyeglass frames, stents, relays, pumps, switches, connectors, clamps, fasteners, and seals.

Amorphous Alloys (Metallic Glasses) No long-range crystalline structure. Have no grain boundaries and the atoms are packed randomly and tightly. First obtained in the 1960s. Typically contain iron, nickel, and chromium, which are alloyed with carbon, phosphorus, boron, aluminum, and silicon. Have excellent corrosion resistance, good ductility, and high strength. Being developed to have twice the strength has high strength steels so they can be used in large structures.

Metal Foams Foam-like substances that metal is only 5% to 20% of its volume. Very light weight. Used in aerospace applications. Also used as filters and orthopedic implants.

Nanomaterials Materials with grains, fibers, films, and composites having particles that are 1-100 nm in size. First investigated in the 1980s. Have qualities superior to those of traditional materials such as strength, hardness, ductility, wear resistance, and corrosion resistance. Used in cutting tools, ceramics, powders for powder-metallurgy processing, next generation computer chips, flat panel displays for laptop computers and televisions, spark-plug electrodes, igniters and fuels for rockets, medical implants, high-sensitivity sensors, high power magnets and high-energy-density batteries.

References Textbook http://www.airforce-technology.com/projects/kc767/images/767tanker_4.jpg http://www.alcaninbc.com/kitimat/sht-l.jpg http://www.qualitycoach.net/data/i%5C%5Chs-1086-2001.gif http://flags.com/images/EderFlag%20Catalog%20Images/Flagpole%20Cleats,%20Halyards,%20Snaps%20&%20Accessories/Heavy-Duty%20Cast%20Aluminum%20Cleat.JPG http://www.cyclonecycles.co.uk/store/images/pedals_tenderizer-ped.jpg http://www.schultz-antiques.com/stock_images/schultz_med/med _kettle%20copper%202.jpg http://www.brent-krueger.com/images/2004%20Uncirc%20Nickel%20obverse-gs.jpg http://www-rpl.stanford.edu/images/research/microengine/cad_nozzle.jpeg

References cont. http://www.us.cbmm.com.br/english/sources/niobium/images/photo/pirocl.jpg http://www.tungstenringstore.com/images/products/246_large_image.jpg http://www.b-jenterprises.com/images/bj07.jpg http://www.etc.org/technologicalandenvironmentalissues/chemicalsofconcern/zinc/images/molten-steel.jpg http://www.rubberimpex.com/images/RubberMachinery/HBTR01/TyreRecapFittingsHighCarbonSteelTyrePolishNail.jpg http://www.sgconsulting.co.za/Products/BatchMixer/Mixer2.jpghttp://www.acesita.com.br/eng/imgs/inox.jpg http://corrosion.ksc.nasa.gov/images/medium/con1_med.jpg http://www.jcwhitney.com/wcsstore/jcwhitney/images/imagecache/I5430.gif The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2005, Columbia University Press

References Cont. http://www.vanderkrogt.net/elements/images/periodic_table.gif http://www.mcachicago.org/search/images/large/WES79-1.jpg http://www.nrhs.com/railfan/2004/bnsf-grain-train-carthage-mo.jpg http://ftp.michaeldbaker.com/train/photos/library/4/i-beam-spacers.jpg http://www.roadraceengineering.com/rreimages/evo5/evo5trans-gears.jpg http://www.joybuy.de/databecker/images/fasteners.jpg http://www.bildon.com/catalog/Admin/photos/large/049109101GH-c.jpg www.nstms.com/ images/crankshaft.jpg http://www.nicholaus.com/lex/images/Lexington- 05%20view%20of%20the%20ship%20from%20the%20beach.jpg http://www.rustfreetrucks.com/bridges/ibeam7.jpg http://www.geo.msu.edu/geo333/images/iron-ore-closeup.jpg http://www.geol.sci.hiroshima-u.ac.jp/~geotect/stonemuseum/photoimage/limestone.jpg http://www.energysolutionscenter.org/HeatTreat/MetalsAdvisor/iron_and_steel/process_descriptions/images/ironmaking.jpgs http://www.bartleby.com/images/A4images/A4blfurn.jpg http://www.schoolscience.co.uk/content/4/chemistry/steel/images/eafurnace2_02.gif http://www.gltaac.org/images/Ingots.gif http://www.imt.si/images/oddelki/kovinski-laboratorij_za_metalurske_procese02.jpg http://www.hfinster.de/StahlArt2/images/steel-industry_C-1-8-01.01.0001.jpg