Optics of GW detectors Jo van den Brand

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
LIGO-G W Where Did the LSC Signals Come From? Fred Raab 27 June 02.
Higher order laser modes in gravitational wave detectors
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Shot noise in GW detectors G González. x Power (ASDC) bright dark /2 The dark fringe L+  L L-  L i  L  P=P 0 sin 2 (  t+k  l) = (P 0 /2) (1+sin.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006.
Virgo Control Noise Reduction
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Control Matt Evans …talk mostly taken from…
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Amaldi conference, June Lock acquisition scheme for the Advanced LIGO optical configuration Amaldi conference June24, 2005 O. Miyakawa, Caltech.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
LIGO- G R Telecon on June, Mach-Zender interferometer to eliminate sidebands of sidebands for Advanced LIGO Osamu Miyakawa, Caltech.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 DC Readout Experiment at the Caltech 40m Laboratory Robert Ward Caltech Amaldi 7 July 14.
Variable reflectivity signal-recycling mirror and control Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
LIGO- G R Sensing and control, SPIE conference, June Sensing and control of the Advanced LIGO optical configuration SPIE conference at.
G Z AJW for Marcus Benna, Cambridge Wavefront Sensing for Advanced LIGO Model of wavefront sensing in a dual- recycled interferometer Consequences.
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Stefan Hild 111th WG1 meeting, Hannover, January 2007 DC-Readout for GEO Stefan Hild for the GEO-team.
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
The VIRGO detection system
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Interferometer configurations for Gravitational Wave Detectors
Technologies of Gravitational Wave Detection
GEO600 Control aspects where do the error signal come from?
Status report of Polarization RSE
Homodyne readout of an interferometer with Signal Recycling
Commissioning the LIGO detectors
Quantum effects in Gravitational-wave Interferometers
Gravitational wave interferometer OPTICS
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Detection Of High Frequency Gravitational Waves At LIGO W. Butler , A
Heavy IMC end payload requirements
Variable reflectivity signal-recycling mirror and control
“Traditional” treatment of quantum noise
LIGO Scientific Collaboration
Improving LIGO’s stability and sensitivity: commissioning examples
Advanced Optical Sensing
Advanced Virgo ISC subsystem
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Optics of GW detectors Jo van den Brand

LISA Introduction General ideas Cavities Reflection locking (Pound-Drever technique) Transmission locking (Schnupp asymmetry) Paraxial approximation Gaussian beams Higher-order modes Input-mode cleaner Mode matching Anderson technique for alignment

LISA General ideas  Measure distance between 2 free falling masses using light – h=2  L/L (~ ) – L= 3 km   L ~ x 10 6 ~ (=10 -3 fm) – light ~ 1  m – Challenge: use light and measure  L/ ~  How long can we make the arms? – GW with f~100 Hz  GW ~c/f=3x10 8 km/s / 100 Hz = 3000 km – Optimal would be GW /4 ~ 1000 km – Need to bounce light 1000 km / 3 km ~ 300 times  How to increase length of arms? – Use Fabri-Perot cavity (now F=50), then  L/ ~ – Measure phase shift  x  y  LBh  e ~ 10.(3 km) /10 -6 =10 -9 rad L +  L L -  L

LISA General ideas  Power needed – PD measures light intensity – Amount of power determines precision of phase measurement  e  t of incoming wave train (phase  ft) – Measure the phase by averaging the PD intensity over a long period of time T period GW /2 = 1/(2f) – Total energy in light beam E=I 0.1/(2f)=hbar.N   e – Due to Poisson distributed arrival times of the photons we have  N  = Sqrt[N  ] – Thus,  E=  N .hbar.  e and  t  E= (  e ).Sqrt[N  ]. hbar.  e >hbar – We find  Sqrt[N  ]  N   = photons – Power needed I 0 = N  hbar.  e.2f ~ 100 W  Power is obtained through power-recycling mirror – Operate PD on dark fringe – Position PR in phase with incoming light – GW signal goes into PD! – Laser 5 W, recycling factor ~40 L +  L L -  L

LISA Cavities  Fabri-Perot cavity (optical resonator)  Reflectivity of input mirror:  Finesse = 50  FSR = 50 kHz  Power  Storage time  Cavity pole

LISA Cavity pole

LISA Overcoupled cavities (r 1 - r 2 < 0)  On resonance 2kL=n   Sensitivity to length changes  Note amplification factor  Note that amplitude of reflected light is phase shifted by 90 o  Reflected light is mostly unchanged |E ref | 2  Imagine that  L is varying with frequency f GW  Loose sensitivity for f GW >f pole Amplification factor (bounce number)

LISA Reflection locking – Pound Drever locking  Dark port intensity goes quadratic with GW phase shift.  How do we get a linear response?  Note, that the carrier light gets p phase shift due to over- coupled cavity.  RFPD sees beats between carrier and sidebands.  Beats contain information about carrier light in the cavity  Phase of carrier is sensitive to  L of cavity LaserEOM 3 x Hz  20 MHz Faraday isolator carrier L sideband RFFD

LISA Reflection locking Demodulation Modulation

LISA Transmission locking  Schnupp locking is used to control Michelson d.o.f. – Make dark port dark and bright port bright – Not intended to keep cavities in resonance – Requires that sideband (reference) light comes out the dark port

LISA Gaussian beams P – complex phase q – complex beam parameter

LISA Higher-order modes

LISA Input-mode cleaner

LISA Applications – Anderson technique

LISA Summary  Some of the optical aspects – Simulate with Finesse  Frequency stabilization – Presentation  Control issues – Presentation