11/23/2009 1 Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics Zebo Tang, Ming Shao, Zhangbu Xu Li Yi Introduction.

Slides:



Advertisements
Similar presentations
Heavy flavor flow from electron measurements at RHIC Shingo Sakai (Univ. of California, Los Angeles)
Advertisements

Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
First Alice Physics Week, Erice, Dec 4  9, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese,
Identified particle transverse momentum distributions in 200 GeV Au+Au collisions at RHIC 刘海东 中国科技大学.
NanChang, April 19, Tsallis Interperation in Heavy-ion (HI) Physics Ming Shao, Zebo Tang, Yi Li, Zhangbu Xu CPPT/USTC Introduction & Motivation Why.
2010/10/18ATHIC2010, Oct 18-20, Wuhan1 Systematic study of particle spectra in heavy-ion collisions using Tsallis statistics Ming Shao, Zebo Tang, Yi Li,
Bingchu Huang, USTC/BNL 1 Bingchu Huang (for STAR Collaboration) University of Science and Technology of China (USTC) Brookhaven National Laboratory (BNL)
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
Statistical Models A. ) Chemical equilibration B
1 相对论重离子碰撞中  介子的产生 陈金辉 中国科学院上海应用物理研究所 QCD 相变与重离子碰撞物理国际暨 2008 年 7 月 10 号 -12 号 Many thanks to: X. Cai, S. Blyth, F. Jin, H. Huang, G. Ma,
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics.
STAR-MTD Workshop, USTC, Mar 30 - Apr 1, Tsallis Fit to RHIC Data Ming Shao CPST/USTC with Zhangbu Xu, Zebo Tang, Li Yi, Lijuan ruan, and more Introduction.
11/05/2009 唐泽波 (USTC), 第十三届全国中高能核物理大会, 合肥 1 Radial flow and non-equilibrium in heavy-ion collisions (from Tsallis-based Blast-Wave) Li Yi, Ming Shao, Zhangbu.
SQM2006, 03/27/2006Haibin Zhang1 Heavy Flavor Measurements at STAR Haibin Zhang Brookhaven National Laboratory for the STAR Collaboration.
Hadronic Resonances in Heavy-Ion Collisions at ALICE A.G. Knospe for the ALICE Collaboration The University of Texas at Austin 25 July 2013.
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Uncertainties in jet event generators due to hadronizaton scheme, Other issues with energy loss on E-by-E hydro, and the extraction of transport coefficients.
Rashmi Raniwala Hot & Dense Matter in RHIC-LHC Era, February 12-14, 2008, TIFR, Mumbai 1 Rashmi Raniwala Department of Physics University of Rajasthan.
May, 20, 2010Exotics from Heavy Ion Collisions KE T and Quark Number Scaling of v 2 Maya Shimomura University of Tsukuba Collaborated with Yoshimasa Ikeda,
Thermal Production of particles at RHIC (Test of Chemical Freeze-out at RHIC) Jun Takahashi for the STAR collaboration SQM2008, Beijing, China.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
A SCENIC OVERVIEW OF J/  PRODUCTION IN HEAVY ION COLLISIONS AT PHENIX Matthew Wysocki, University of Colorado For the PHENIX Collaboration.
Partonic Collectivity at RHIC ShuSu Shi for the STAR collaboration Lawrence Berkeley National Laboratory Central China Normal University.
Quarkonium Workshop, BNL, June 6-18, Zebo USTC Zebo Tang (for the STAR Collaboration) University of Science and Technology of China (USTC)
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Matter System Size and Energy Dependence of Strangeness Production Sevil Salur Yale University for the STAR Collaboration.
20 Nov 2006, Quark Matter, Shanghai, ChinaShinIchi Esumi, Univ. of Tsukuba1 Rapporteur 3 Bulk Properties and Collective Phenomena ShinIchi Esumi Univ.
R. BELLWIED Lecture 2, Part 1: Yields. R. BELLWIED Chemical freeze-out (yields & ratios)  inelastic interactions cease  particle abundances fixed (except.
J/Ψ PRODUCTION IN A+A COLLISIONS AT STAR Ota Kukral for the STAR Collaboration Czech Technical University in Prague RHIC & AGS Annual Users’ Meeting 17.
Characterizing non-equilibrium and radial flow at RHIC with Tsallis statistics What physics can spectra address? Why do we need a new BlastWave model and.
Energy Dependence of ϕ -meson Production and Elliptic Flow in Au+Au Collisions at STAR Md. Nasim (for the STAR collaboration) NISER, Bhubaneswar, India.
Steffen A. BassDynamics of Hadronization #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at RHIC Recombination + Fragmentation.
System size dependence of freeze-out properties at RHIC Quark Matter 2006 Shanghai-China Nov System size dependence of freeze-out properties.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
CCAST, Beijing, China, 2004 Nu Xu //Talk/2004/07USTC04/NXU_USTC_8July04// 1 / 26 Collective Expansion in Relativistic Heavy Ion Collisions -- Search for.
Physics of Dense Matter in Heavy-ion Collisions at J-PARC Masakiyo Kitazawa J-PARC 研究会、 2015/8/5 、 J-PARC.
Presentation for NFR - October 19, Trine S.Tveter Recent results from RHIC Systems studied so far at RHIC: - s NN 1/2 = 
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
HIRSCHEGG, January , 2005 Nu Xu //Talk/2005/01Hirschegg05// 1 / 24 Search for Partonic EoS in High-Energy Collisions Nu Xu Lawrence Berkeley National.
9 th June 2008 Seminar at UC Riverside Probing the QCD Phase Diagram Aneta Iordanova.
04/14/2010Workshop on Critical Examination of of RHIC Paradigms1 Review of particle spectrum data Outline: What have we learnt from published data bulk.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
High-p T Particles and RHIC Paradigm of Jet Quenching Ahmed M. Hamed NN2012 The 11 th International Conference on Nucleus-Nucleus Collisions 1.
Heavy Flavor Workshop, Beijing, China, ShinIchi Esumi, Univ. of Tsukuba1 Heavy flavor collective flow measurements at RHIC ShinIchi Esumi Univ.
Bulk properties of the system formed in Au+Au collisions at √s NN = 14.5 GeV using the STAR detector at RHIC Vipul Bairathi (for the STAR Collaboration)
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Systematic Study of Elliptic Flow at RHIC Maya SHIMOMURA University of Tsukuba ATHIC 2008 University of Tsukuba, Japan October 13-15, 2008.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
QM08, Jaipur, 9 th February, 2008 Raghunath Sahoo Saturation of E T /N ch and Freeze-out Criteria in Heavy Ion Collisions Raghunath Sahoo Institute of.
24 June 2007 Strangeness in Quark Matter 2007 STAR 2S0Q0M72S0Q0M7 Strangeness and bulk freeze- out properties at RHIC Aneta Iordanova.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
Nu Xu“Hot and Dense Matter in the RHIC-LHC Era”, Mumbai, India, February 12-14, 20081/27 Many Thanks to the Conference Organizers Partonic EoS at RHIC.
Nu Xu1/36 International School of Nuclear Physics, 30 th Course, Erice-Sicily, September 2008 Explore the QCD Phase Diagram - Partonic Equation.
Elliptic Flow of Inclusive Photon Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio Oct. 22,
Hadron Spectra and Yields Experimental Overview Julia Velkovska INT/RHIC Winter Workshop, Dec 13-15, 2002.
Strange hadrons and resonances at LHC energies with the ALICE detector INPC 2013 Firenze, Italy 2 -7 June 2013 A. Badalà (INFN Sezione di Catania) for.
Heavy quarks and charmonium at RHIC and LHC within a partonic transport model Jan Uphoff with O. Fochler, Z. Xu and C. Greiner XLIX International Winter.
STAR and RHIC; past, present and future.
Experimental Studies of Quark Gluon Plasma at RHIC
System Size and Energy Dependence of -meson Production at RHIC
用重味探测夸克胶子等离子体 Heavy Flavor as a Probe of Quark-Gluon Plasma
Presentation transcript:

11/23/ Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics Zebo Tang, Ming Shao, Zhangbu Xu Li Yi Introduction & Motivation Why and how to implement Tsallis statistics in Blast-Wave framework Results − strange hadrons vs. light hadrons − J/  radial flow − beam energy dependence Conclusion

11/23/ Thermalization and Radial flow Matter flows – all particles have the same collective velocity: Multi-strange decouple earlier than light hadrons From Blast-Wave

11/23/ Decouple at chemical freeze-out Decouple with pion and proton Hydrodynamics evolution Light hadrons Multi-strange  Multi-strange particle spectra can be well described by the same hydrodynamics at the same freeze-out as light hadrons  in contrast to the Blast-wave results Ulrich Heinz, arXiv:

11/23/ Blast-Wave Model Source is assumed to be: –Local thermal equilibrated  Boltzmann distribution –Boosted radically –Temperature and  T  are global quantities random boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993) Extract thermal temperature T fo and velocity parameter  T  BGBW: Boltzmann-Gibbs Blast-Wave Nu Xu

11/23/ Limitation of the Blast-wave Strong assumption on local thermal equilibrium Arbitrary choice of p T range of the spectra Flow velocity =0.2 in p+p Lack of non-extensive quantities to describe the evolution from p+p to central A+A collisions –m T spectra in p+p collisions Levy function or m T power-law –m T spectra in A+A collisions Boltzmann or m T exponential

11/23/ Non-extensive Tsallis statistics C. Tsallis, H. Stat. Phys. 52, 479 (1988) Wilk and Wlodarzcyk, EPJ40, 299 (2009) Particle p T spectra: Exponential  Power law

11/23/ Temperature fluctuation Wilk and Wlodarzcyk, EPJ40, 299 (2009) Wilk and Wlodarzcyk, PRL84, 2770 (2000) Reverse legend

11/23/ Tsallis statistics in Blast-wave model BGBW: With Tsallis distribution: The Blast-wave equation is:

11/23/ Fit results in Au+Au collisions ZBT,Yichun Xu, Lijuan Ruan, Gene van Buren, Fuqiang Wang and Zhangbu Xu, Phys. Rev. C 79, (R) (2009)

11/23/ Fit strange hadrons only Strangeness, Au+Au 0-10%: = T = q = chi^2/nDof = 51/99 T strange >T light-hadrons Strangness decouple from the system earlier All available species

11/23/ Centrality dependence for T and <    Multi-strange hadrons decouple earlier Hadron rescattering at hadronic phase doesn’t produce a collective radial flow, instead, it drives the system off equilibrium Partons achieve thermal equilibrium in central collisions

11/23/ How about heavy hadrons?

11/23/ J/  suppression at RHIC and SPS Grandchamp, Rapp, Brown PRL 92, (2004) nucl-ex/ Regeneration? Test with J/  flow. quarkonium – gloden probe of QGP deconfinement (color screening) thermometer J/  suppression at RHIC ≈ J/  suppression at SPS (energy differs by ~10 times) Puzzle!

11/23/ J/  Elliptic flow Heavy Flavor decay electron Too early to compare with models Won’t have enough statistics before 2011 J/  Ermias T. Atomssa, QM2009 Alan Dion, QM2009 PHENIX Beam Use Request

11/23/ How about radial flow? Yifei Zhang, QM2008, STAR, arXiv:nucl-ex/ (submitted to PRL) Sizeable radial flow for heavy flavor decay electrons

11/23/ J/  radial flow = T = q =  2 /nDof = / 26 J/  radial flow consistent with 0 Inconsistent with regeneration

Beam energy dependence 11/23/ The radial flow velocity at SPS is smaller than that at RHIC. 2.Freeze-out temperatures are similar at RHIC and SPS. 3.The non-equilibrium parameter (q-1) is small in central nucleus-nucleus collisions at RHIC and SPS except a larger (q -1) value for non-strange hadrons at RHIC energy

Check— Parameter Correlation 11/23/ = T = q =  2 /nDof = / 13 = T = q =  2 /nDof = / 37

Check—Strangeness and light hadrons 11/23/

11/23/ Summary Identified particle spectra from SPS to RHIC has been analyzed with Tsallis statistics in Blast-wave description (light hadrons, multi-strange hadrons, charmonium) Partonic phase –Partons achieve thermal quilibrium in central heavy-ion collisions –J/  are not thermalized and disfavor regeneration Multi-strange hadrons decouple earlier Hadronic phase –Hadronic rescattering doesn’t produce collective radial flow –It drives the system off equilibrium –Radial flow reflects that when the multi-strange decouples