Mineral color and pleochroism

Slides:



Advertisements
Similar presentations
Interference figures Very important tool to determine optical characteristics. They will tell you: Uniaxial vs biaxial Optic sign 2V angle – for biaxial.
Advertisements

Appearance of crystals in microscope Crystal shape – how well defined the crystal shape is –Euhedral – sharp edges, well- defined crystal shape –Anhedral.
OPTICAL PROPERTIES OF ROCK FORMING MINERAL
Polarized Light. Polarizing Filters Natural Polarization.
Light ray overview Rays are split into 2 orthogonal rays (e and w) – these rays are slowed to different degrees (apparent birefringence, d related to the.
Optical Mineralogy WS 2012/2013
Optical Microscopy Study of how light passes through thin sections – rock cut and polished to about 0.3 mm thickness Use properties of light absorption.
Optical Mineralogy WS 2012/2013. The week before last…. l BIAXIAL INDICATRIX l EXTINCTION ANGLES.
Optical Mineralogy WS 2008/2009. Next week …. So far …. Light - properties and behaviour; Refraction - the refractive index (n) of minerals leads to.
Cpx Oliv Oliv Oliv Cpx Biaxial Minerals Francis 2013 Cpx.
GEOL 3055 Morphological and Optical Crystallography JHSchellekens
Indicatrix Imaginary figure, but very useful
The Optical Indicatrix
Chapter 9 Optical Properties
Extinction Angle and Pleochroism
Lab 13 – Fall, 2012 Uniaxial Interference Figures
Lecture 16 (11/20/2006) Analytical Mineralogy Part 3: Optical Properties of Biaxial Minerals.
Lecture 15 (11/15/2006) Analytical Mineralogy Part 2: Optical Properties of Uniaxial Minerals.
Study of Rocks 1) Field outcrop observe relationship between rocks
OPTICAL MINERALOGY TRIVIA ROUND 2!. Round 2 – Question 1 Under cross-polars, when will this mineral go to extinction?
Optical Mineralogy WS 2008/2009. Last week…. Indicatrix - 3-d representation of changing n in minerals (Z = biggest = slowest, X = smallest = fastest)
The Optical Indicatrix
Time for some new tricks: the optical indicatrix
Optical Microscopy Study of how light passes through thin sections – rock cut and polished to about 0.3 mm thickness Use properties of light absorption.
Optical Mineralogy in a Nutshell
Optical Mineralogy Technique utilizing interaction of polarized light with minerals Uses a polarizing microscope Oils - Grain mounts Thin sections – rocks.
Isotropic vs Anisotropic
Optical Mineralogy in a Nutshell
Identification of minerals with the petrographic microscope
Optical Mineralogy in a Nutshell
Source of course material Dr. Olaf Medenbach, Ruhr-Universit ä t Bochum Optical microscopy of rock-forming minerals, G. W ö rner, USTC Hefei Compact Course.
1 Optical Indicatrix GLY 4200 Fall, Geometrical Representation The idea of a geometrical representation of the variance of the index of refraction.
1 Today’s objectives What happens when light passes through most minerals?What happens when light passes through most minerals? Why do some minerals change.
Review of Optical Mineralogy GEOL 5310 Advanced Igneous and Metamorphic Petrology 9/9/09.
Introduction to Mineralogy Dr
Chapter 10 - B Identification of minerals with the petrographic microscope.
1 Optical Properties of Minerals GLY 4200 Fall, 2012.
Pleochroism, Interference Colors,
Interference Figures 1. Uniaxial Figures
Optical Mineralogy in a Nutshell Use of the petrographic microscope in three easy lessons Part I © Jane Selverstone, University of New Mexico, 2003 Used.
Optical Mineralogy in a Nutshell
Optical Mineralogy in a Nutshell
Optical Properties of Minerals
GLG212 Part II, Lecture 1: Indicatrix and interference figures
Frequency = # of waves/sec to pass a given point (hz)
Optical Mineralogy in a Nutshell Use of the petrographic microscope in three easy lessons Part III © Jane Selverstone, University of New Mexico, 2003 Used.
Optical Mineralogy WS 2008/2009. Theory Exam…. Thursday 18th 13:30 90 minutes Answer 3 questions from 5 Total of 30% of the course.
Optical Mineralogy in a Nutshell Use of the petrographic microscope in three easy lessons Part II © 2003 Prof. Jane Selverstone Used and modified with.
Optical Mineralogy in a Nutshell
Optical Mineralogy in a Nutshell
Pleochroism, Interference Colors,
Optical Properties of Minerals
Measuring Birefringence of Anisotropic Crystals
Light in Minerals II.
Pleochroism, Interference Colors,
Time for some new tricks: the optical indicatrix
Optical Mineralogy in a Nutshell
Pleochroism, Interference Colors,
Optical Mineralogy in a Nutshell
Optical Microscopy Study of how light passes through thin sections – rock cut and polished to about 0.3 mm thickness Use properties of light absorption.
Optical Microscopy Study of how light passes through thin sections – rock cut and polished to about 0.3 mm thickness Use properties of light absorption.
Appearance of crystals in microscope
Optical Mineralogy in a Nutshell
Biaxial Crystals Orthorhombic, Monoclinic, and Triclinic crystals don't have 2 or more identical crystallographic axes The indicatrix is a triaxial ellipsoid.
Feldspars.
Uniaxial Optics.
Pyroxenes, Pyroxenoids
Pleochroism, Interference Colors,
Optical Mineralogy in a Nutshell
Optical Mineralogy in a Nutshell
Presentation transcript:

Mineral color and pleochroism True color Not interference colors Observed in plane polarized light Not crossed nicols Most minerals are colorless

Pleochroism Property of having two or more true colors Occurs only in anisotropic minerals Each principal vibration direction has a unique color Preferentially absorbs selected wavelengths of light

Pleochroism – Glaucophane (amphibole – Na, Mg, Fe – Silicate) Pleochroism – orthopyroxene – (Ca, Fe, Mg – Silicate)

Color depends on which vibration direction parallels polarized direction Slow ray has one color Fast ray another color Color intermediate if neither direction parallel to polarized direction Pleochroic formula Relationship of color to index of refraction (a, b, g, e, w) that shows the color

Pleochroic formula Multiple types of formulas: Color of e, w, a, b, or g rays Greater absorbance e.g. w > e or e > w “strongly” or “weakly” pleochroic

Determination of formula – uniaxial minerals Find grain with d = 0 This is value of w color Find grain with maximum d This has both e and w Already know w, so other color must be e

Grains seen in plane polarized light (not crossed nicols) Direction of polarized light Grains seen in plane polarized light (not crossed nicols) 1st grain (not shown) – complete extinction Viewed in plane polarized light gives w color 2nd grain (shown) – provides w and e colors Since know w already, the other color is e Determine fast and slow with accessory plate Fig. 7-30

Biaxial Pleochroism Biaxial minerals may have three colors: One for a, b, and g Procedure similar to uniaxial minerals, but more complex Find extinct section – b color Find maximum d – this grain has a and g colors Determine fast and slow direction with accessory plate

Vibration directions parallel to accessory plate If addition, color associated with ng If subtraction, color associated with na Remember – check color without analyzer in na ng Fig. 7-31

Extinction Four Categories: Parallel extinction – feature (usually cleavage) parallel to cross hairs at extinction Inclined extinction – extinction when feature is at an angle to cross hairs Symmetrical extinction – occurs in minerals with two cleavages: bisect cleavage No extinction angle – minerals with no elongation or cleavage

Parallel Inclined No extinction angle Symmetrical Fig. 7.32

Extinction may not be uniform Physically deformed minerals Minerals with variable chemical composition (chemically zoned) Undulatory Extinction Zoned Extinction

Extinction angle Inclined extinction - angle between long axis of mineral grain prominent cleavage Twins Other crystallographic feature

Long direction, also parallel to cleavage Extinction angle Long direction, also parallel to cleavage Rotate stage until crystallographic feature is parallel to cross hairs Record angle on goniometer Rotate stage until mineral is extinct Now mineral vibration direction is parallel to polarized light direction Amount of rotation is extinction angle Fig. 7-31

Possible to determine chemical composition from extinction angle Michel-Levy technique

Michel-Levy Technique Section cut perpendicular to {010} Albite twin lamellae Cut of mineral must be with {010} plane vertical, b crystallographic axis horizontal b a b b NaAlSi3O8 CaAl2Si2O8 Characteristics: Sharp boundaries between twins Twin lamellae have same interference colors High plagioclase = volcanic Low plagioclase = plutonic Fig. 12.15 & 12.17

Feldspars - Triclinic minerals: Two cleavages Many types of twins Albite Na-feldspar NaAlSi3O8 Feldspars - Triclinic minerals: Two cleavages Many types of twins Extinction angles show relationship between X-Y-Z axes (indicatrix axes) and a-b-c axes (crystallographic axes) Z b X b Z X An0 to An10 An30 to An50 Z Z b b X X Anorthite Ca-feldspar CaAl2Si2O8 An50 to An70 An90 to An100 p. 245

Sign of Elongation Length fast: elongate direction of mineral parallels fast vibration direction Also called negative elongation Length slow: elongate direction of mineral parallels slow vibration direction Also called positive elongation Length fast and length slow depends on cut of grain

Determination Orient grain with vibration direction and length about 45º to polarized direction Use accessory plate to determine addition or subtraction of retardation Determines if fast or slow ray

Vibration directions parallel to accessory plate If addition, length slow (positive elongation) If subtraction, length fast (negative elongation) Length fast Length slow Fig. 7-31

Orthorhombic Minerals (biaxial) ng = elongate na = elongate nb = elongate Either length slow or length fast Always length slow Always length fast