275 Chapter 12: Reactions of Arenes: Electrophilic Aromatic Substitution 12.1: Representative Electrophilic Aromatic Substitution Reactions of Benzene.

Slides:



Advertisements
Similar presentations
Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4  Ar-NO 2 + H 2 O 2.Sulfonation.
Advertisements

22-1 Di- and Polysubstitution  Orientation on nitration of monosubstituted benzenes.
Organic Chemistry Reviews Chapter 15 Cindy Boulton March 29, 2009.
Organic Chemistry 4 th Edition Paula Yurkanis Bruice Irene Lee Case Western Reserve University Cleveland, OH ©2004, Prentice Hall Chapter 16 Reactions.
Bromination of Benzene
I Substituent Effects in Electrophilic Aromatic Substitution.
Chapter 18 Electrophilic Aromatic Substitution
Chapter 18 Electrophilic Aromatic Substitution
Electrophilic Aromatic Substitution
CH 16: Chemistry of Benzene Renee Y. Becker CHM 2211 Valencia Community College 1.
1 Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic?
Electrophilic Aromatic Substitution
Chapter 17 Reactions of Aromatic Compounds
Benzene and its Derivatives
Electrophilic Attack.
Chapter 9 Second Half. Electrophilic aromatic substitution electrophile (E + ) reacts with an aromatic ring and substitutes for one of the hydrogens The.
Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution
Directing Effects of Substituents in Conjugation with the Benzene Ring 16-3 Groups that donate electrons by resonance activate and direct ortho and para.
5. Benzene and Aromaticity Aromatic Compounds The term “Aromatic” is used to refer to the class of compounds structurally related to Benzene. The first.
Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice Hall.
Reactions of Aromatic Compounds
CHE 242 Unit VI The Study of Conjugated Systems, Aromaticity and Reactions of Aromatic Compounds CHAPTER SEVENTEEN Terrence P. Sherlock Burlington County.
EAS Rxns of Substituted Benzenes Substituents on a benzene ring can affect two things: 1)Location of subsequent substitution rxns 2)Reactivity of ring.
CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION Dr. Sheppard CHEM 2412 Summer 2015 Klein (2 nd ed.) sections: 19.1, 19.2, 19.3, 19.4, 19.5, 19.6,
1 Benzene and Aromatic Compounds Buckminsterfullerene—Is it Aromatic? The two most common elemental forms of carbon are diamond and graphite. Their physical.
1 Substitution Reactions of Benzene and Its Derivatives: Electrophilic Addition/Elimination Reactions. Benzene is aromatic: a cyclic conjugated compound.
16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 16 ©2003 Ronald Kluger Department.
16. Chemistry of Benzene: Electrophilic Aromatic Substitution
16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 16.
Aromatic Substitution Reactions
Chapter 12 - Reactions of Benzene - EAS 12.1Introduction to benzene vs. alkenes 12.2Mechanistic principles of Electrophilic Aromatic Subsitution 12.3Nitration.
Electrophilic Aromatic Substitution Activating and Directing effects of substituents already on the ring.
Chapter 8 Aromaticity Reactions of Benzene. Aromatic compounds undergo distinctive reactions which set them apart from other functional groups. They.
Chapter 15 Reactions of Aromatic Compounds. Chapter 152  Electrophilic Aromatic Substitution  Arene (Ar-H) is the generic term for an aromatic hydrocarbon.
Spring 2009Dr. Halligan CHM 236 Electrophilic Aromatic Substitution Chapter 18.
12.15 Multiple Substituent Effects. all possible EAS sites may be equivalent The Simplest Case AlCl 3 O CH 3 COCCH 3 O+ CH 3 CCH 3 O99%
BenZene Ractions Dr Md Ashraful Alam Assistant Professor Department of Pharmaceutical Sciences.
Reactions of Aromatic Compounds. Chapter 152  Electrophilic Aromatic Substitution  Arene (Ar-H) is the generic term for an aromatic hydrocarbon  The.
Electrophilic Aromatic Substitution (EAS)Reactions Overall reaction.
Chapter 15 Reactions of Aromatic Compounds
Organic Chemistry William H. Brown & Christopher S. Foote.
Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution
Substituent Effects - Induction
Substituents on Slide 25. The Phenyl Group When a benzene ring is a substituent, the term phenyl is used (for C 6 H 5  ) –You may also see “Ph” or “
16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry’s Organic Chemistry, 7 th edition.
Reaction Orientation (ortho/meta/para)
Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution HE+ EY + HY ++++ ––––
Chapter 12 - Reactions of Benzene - EAS
Electrophilic Aromatic Substitution
Aromaticity: Reactions of Benzene and Substituted Benzenes
16. Chemistry of Benzene: Electrophilic Aromatic Substitution
Aromatic Nitration - Mechanism
16. Chemistry of Benzene: Electrophilic Aromatic Substitution
Reactions of Aromatic Compounds
Chapter 12 (Part a) Reactions of Arenes: Electrophilic Aromatic Substitution + Y d+ d– Dr. Wolf's CHM 201 &
Organic Chemistry, First Edition Janice Gorzynski Smith
CH 16: Chemistry of Benzene
Chemistry of Aromatic Compounds
Energy Diagram =>.
(Aromatic hydrocarbons)
Aromatic Compounds.
Chemistry of Benzene: Electrophilic Aromatic Substitution
Electrophilic Aromatic Substitution (Aromatic compounds)
Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon.
Mechanism of Electrophilic Aromatic Substitution
OF AROMATIC HYDROCARBONS
Electrophilic Aromatic Substitution
Isolated and Conjugated Dienes
22-1 Chapter 22 Reaction of Benzene and its Derivatives.
Presentation transcript:

275 Chapter 12: Reactions of Arenes: Electrophilic Aromatic Substitution 12.1: Representative Electrophilic Aromatic Substitution Reactions of Benzene E= -Cl, -Br, -I (halogenation) -NO 2 (nitration) -SO 3 H (sulfonation) -R (alkylation) (acylation) (Table 12.1) 275

: Mechanistic Principles of Electrophilic Aromatic Substitution 276 Recall the electophilic addition of HBr (or Br 2 ) to alkenes (Ch. 6) Most aromatic rings (benzene) are not sufficiently nucleophilic to react with electrophiles. Catalysts are often needed to increase the reactivity of the electrophiles. Mechanism: a  -bond of benzene acts as a nucleophile and “attacks” the electrophile leading to a resonance stabilized cyclohexadienyl carbocation. Loss of a proton gives the substitution product and restores aromaticity.

277 Electrophilic substitution: product regains aromatic stabilization Electrophilic addition: products lose aromatic stabilization Aromaticity is worth ~ KJ/mol Resonance stabilized cyclohexadienyl cation intermediate

: Nitration of Benzene 278

: Sulfonation of Benzene sulfur analogue of a carboxylic acids 279

: Halogenation of Benzene 280

: Friedel-Crafts Alkylation of Benzene 281

282 Since the Friedel-Crafts alkylation goes through a carbocation intermediate, skeletal rearrangements of the alkyl halide are common 282

283 alkyl halide: halide = F, Cl, Br, I must be an alkyl halide; vinyl and aryl halides do not react the aromatic substrate: can not have strong electron withdrawing substituents, nor an amino group Y ≠ NO 2, C  N, -SO 3 H (R= ketone, aldehyde, carboxylic acids, ester) -NH 2, NHR, NR 2, -N + R 3, F-C alkylation is often difficult to stop after one alkylation reaction 283

: Friedel-Crafts Acylation of Benzene acyl group The acylated product is less reactive than benzene toward electrophilic aromatic substitution. F-C acylation can be stopped after one acyl group is added 284

: Synthesis of Alkylbenzenes by Acylation-Reduction Ketones and aldehydes can be reduced to the alkanes with: Zn(Hg), HCl (Clemmensen Reduction) H 2 NNH 2, KOH (Wolff-Kishner Reduction) 285 Rearrangements and multiple alkylations are not observed for the F-C acylation

: Rate and Regioselectivity in Electrophilic Aromatic Substitution - The nature of a substituent already present on the benzene ring affects the rate and regioselectivity (relative position) of electrophilic aromatic substitution. A substituent (-X) is said to be activating if the rate of electrophilic aromatic substitution of the substituted benzene (C 6 H 5 X) is faster than benzene. A substituent (-X) is said to be deactivating if the rate of electrophilic aromatic substitution of the substituted benzene (C 6 H 5 X) is slower than benzene. Relative rate of nitration: 2.5 x deactivating activating

287 A substituent (-X) is said to be an ortho-para director if it directs an incoming electrophile to positions ortho and/or para to itself. A substituent (-X) is said to be an meta director if it directs an incoming electrophile to position meta to itself.

288 Substituents are characterized as either electron-donating or electron-withdrawing and alter the electron density of the aromatic ring through: 1. Inductive effects: ability of a substituent to donate or withdraw electron density through  -bonds due to electronegativity differences and bond polarities of a functional group 2. Resonance effects: ability of a substituent to donate or withdraw electrons through non-bonding pairs of electrons or overlap  -bonds (conjugation).

289 The rate (activating or deactivating) and regiochemistry (ortho-para vs meta directing) can be understood by examining the influence of the substituent on the stability of the cyclohexa- dienyl cation intermediate : Rate and Regioselectivity in the Nitration of Toluene: Regioselectivity: The carbocation intermediate from o- or p-addition can be stabilized by the substituent through inductive effects and hyperconjugation.

290 Activating groups increase the rate of electrophilic aromatic substitution at all positions of the ring. Partial rate factors - relative rate of electrophilic aromatic substitution compared to benzene Electron rich aromatic rings are more nucleophlic. All activating group donate electrons through inductive effects and/or resonance. Electron-donating groups stabilize the carbocation intermediate of electrophilic aromatic substitution.

: Rate and Regioselectivity in the Nitration of (Trifluoromethyl)benzene - Regioselectivity: The carbocation intermediate from o- or p-addition is destabilized by the electron-withdrawing substituent. This directs addition to the m-position.

292 Dactivating groups decrease the rate of electrophilic aromatic substitution at all positions of the ring. Partial rate factors - relative rate of electrophilic aromatic substitution compared to benzene Electron deficient aromatic rings are less nucleophlic. All deactivating group withdraw electrons through inductive effects and/or resonance. Electron-withdrawing groups destabilize the carbocation intermediate of electrophilic aromatic substitution.

: Substituent Effects in Electrophilic Aromatic Substitution: Activating Substituents All activating substituents increase the rate of electrophilic aromatic substitution and are ortho-para directors. Nitration of phenol: the -OH is a very strong activating group

294 Substituents that have an O or N atom directly attached to the aromatic ring are strong activators. Phenol, anisole, and anilines are very strong activators and do not require strong Lewis Acid catalysts to undergo electrophilic aromatic substutution. -alkyl, -vinyl, -aryl -OH, -OCH 3, -NH 2 activators strong activators very strong activators 12.13: Substituent Effects in Electrophilic Aromatic Substitution: Strongly Deactivating Substituents Strong deactivators are meta directors strong deactivators very strong deactivators

: Substituent Effects in Electrophilic Aromatic Substitution: Halogens - Halogens are deactivating because they are strong electron withdrawing groups (inductive effect); however, they have non-bonding pairs of electrons and can also donate electrons (resonance effect ), and are ortho-para directors.

: Multiple Substituent Effects - The individual directing effect of each substituent must be considered in order to determine the overall directing effect of a disubstituted benzene toward further electrophilic substitution. Table 12.2, p. 491

When the individual directing effects of the two groups reinforce, further electrophilic substitution is directed to the common position. 2. When the individual directing effects of two groups oppose, the stronger activating group has the dominant influence; however, mixtures of products are often produced.

298 3.Further substitution between two existing substituents rarely occurs. Start with an ortho-disubstituted benzene to synthesize 1,2,3-trisubstituted benzenes

: Regioselective Synthesis of Disubstituted Aromatic Compounds Consider the directing effects of the substituents to determine the order of their introduction to ensure the correct orientation Friedel-Crafts reactions (alkylation, acylation) cannot be carried out on strongly deactivated aromatics Sometimes electrophilic aromatic substitution must be combined with a functional group transformation

300

: Substitution in Naphthalene (please read) 12.18: Substitution in Heterocyclic Aromatic Compounds (please read) Summary of electrophilic aromatic substitution of benzene Zanger, M.; Gennaro, A. R.; McKee, J. R. J. Chem. Ed. 1993, 70 (12),