1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Shading I.

Slides:



Advertisements
Similar presentations
Computer Graphics - Shading -
Advertisements

Computer Graphics Shading Lecture 13 John Shearer
Computer Graphics I, Fall 2010 Shading II.
1 Graphics CSCI 343, Fall 2013 Lecture 18 Lighting and Shading.
CAP 4703 Computer Graphic Methods Prof. Roy Levow Chapter 6.
CS 480/680 Computer Graphics Shading 2 Dr. Frederick C Harris, Jr.
Virtual Realism LIGHTING AND SHADING. Lighting & Shading Approximate physical reality Ray tracing: Follow light rays through a scene Accurate, but expensive.
1 Computer Graphics By : Mohammed abu Lamdy ITGD3107 University of Palestine Supervision: Assistant Professor Dr. Sana’a Wafa Al-Sayegh.
Light Issues in Computer Graphics Presented by Saleema Amershi.
1. What is Lighting? 2 Example 1. Find the cubic polynomial or that passes through the four points and satisfies 1.As a photon Metal Insulator.
Based on slides created by Edward Angel
University of New Mexico
Computer Graphics - Class 10
Rendering (彩現 渲染).
IMGD 1001: Illumination by Mark Claypool
Lighting and Shading Wen-Chieh (Steve) Lin
1 CSCE 641: Computer Graphics Lighting Jinxiang Chai.
Objectives Learn to shade objects so their images appear three- dimensional Learn to shade objects so their images appear three- dimensional Introduce.
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2005 Tamara Munzner Lighting and Shading Week.
6.1 Vis_04 Data Visualization Lecture 6 - A Rough Guide to Rendering.
CS5500 Computer Graphics March 26, Shading Reference: Ed Angel’s book.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Course Website: Computer Graphics 16: Illumination.
Lighting & Shading.
LIGHTING Part One - Theory based on Chapter 6. Lights in the real world Lights bounce off surfaces and reflect colors, scattering light in many directions.
Shading Surface can either (both) 1.Emit light. E.g. light bult 2.Reflect light. E.g. Mirror.
CS 480/680 Computer Graphics Shading I Dr. Frederick C Harris, Jr.
Illumination.
Fundamentals of Computer Graphics Part 6 Shading prof.ing.Václav Skala, CSc. University of West Bohemia Plzeň, Czech Republic ©2002 Prepared with Angel,E.:
CS 445 / 645: Introductory Computer Graphics
Computer Graphics Lighting.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Shading I Shandong University Software College Instructor: Zhou Yuanfeng
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Chapter 6: Shading Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Shading (introduction to rendering). Rendering  We know how to specify the geometry but how is the color calculated.
COMPUTER GRAPHICS CS 482 – FALL 2014 AUGUST 27, 2014 FIXED-FUNCTION 3D GRAPHICS MESH SPECIFICATION LIGHTING SPECIFICATION REFLECTION SHADING HIERARCHICAL.
1 Chapter 6 Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
CSC418 Computer Graphics n Illumination n Lights n Lightinging models.
David Luebke 1 10/26/2015 Lighting CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
University of Texas at Austin CS 378 – Game Technology Don Fussell CS 378: Computer Game Technology Basic Rendering Pipeline and Shading Spring 2012.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Advanced Illumination Models Chapter 7 of “Real-Time Rendering, 3 rd Edition”
Illumination.
Illumination and Shading
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Lecture Fall 2001 Illumination and Shading in OpenGL Light Sources Empirical Illumination Shading Transforming Normals Tong-Yee Lee.
Shading. For Further Reading Angel 7 th Ed: ­Chapter 6 2.
Local Illumination and Shading
Cornell CS465 Spring 2004 Lecture 4© 2004 Steve Marschner 1 Shading CS 465 Lecture 4.
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Illumination and Shading Sang Il Park Sejong University.
OpenGL Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
Lighting and Reflection Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Computer Graphics Lecture 25 Fasih ur Rehman. Last Class Shading.
Illumination Models. Introduction 1 Illumination model: Given a point on a surface, what is the perceived color and intensity? Known as Lighting Model,
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Computer Graphics Ken-Yi Lee National Taiwan University (the slides are adapted from Bing-Yi Chen and Yung-Yu Chuang)
Computer Graphics: Illumination
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 Computer Graphics Three-Dimensional Graphics V.
Illumination : Hearn & Baker Ch. 10
7. Illumination Phong Illumination Diffuse, Specular and Ambient
CSC461: Lecture 23 Shading Computation
CSE 470 Introduction to Computer Graphics Arizona State University
CS5500 Computer Graphics April 10, 2006.
Isaac Gang University of Mary Hardin-Baylor
Lighting and Shading (I)
CS 480/680 Computer Graphics Shading.
CS 480/680 Computer Graphics Shading.
Presentation transcript:

1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Shading I

2 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware

3 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Why we need shading Suppose we build a model of a sphere using many polygons and color it with glColor. We get something like But we want

4 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Shading Why does the image of a real sphere look like Light-material interactions cause each point to have a different color or shade Need to consider ­Light sources ­Material properties ­Location of viewer ­Surface orientation

5 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Scattering Light strikes A ­Some scattered ­Some absorbed Some of scattered light strikes B ­Some scattered ­Some absorbed Some of this scattered light strikes A and so on

6 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Rendering Equation The infinite scattering and absorption of light can be described by the rendering equation ­Cannot be solved in general ­Ray tracing is a special case for perfectly reflecting surfaces Rendering equation is global and includes ­Shadows ­Multiple scattering from object to object

7 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Global Effects translucent surface shadow multiple reflection

8 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Local vs Global Rendering Correct shading requires a global calculation involving all objects and light sources ­Incompatible with pipeline model which shades each polygon independently (local rendering) However, in computer graphics, especially real time graphics, we are happy if things “look right” ­Use techniques for approximating global effects

9 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Light-Material Interaction Light that strikes an object is partially absorbed and partially scattered (reflected) The amount reflected determines the color and brightness of the object ­A surface appears red under white light because the red component of the light is reflected and the rest is absorbed The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface

10 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Light Sources General light sources are difficult to work with because we must integrate light coming from all points on the source

11 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Simple Light Sources Point source ­Model with position and color ­Distant source = infinite distance away (parallel) Spotlight ­Restrict light from ideal point source Ambient light ­Same amount of light everywhere in scene ­Can model contribution of many sources and reflecting surfaces

12 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Surface Types The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light A very rough surface scatters light in all directions smooth surface rough surface

13 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Phong Model A simple model that can be computed rapidly Has three components ­Diffuse ­Specular ­Ambient Uses four vectors ­To source ­To viewer ­Normal ­Perfect reflector

14 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Lambertian Surface Perfectly diffuse reflector Light scattered equally in all directions Amount of light reflected is proportional to the vertical component of incoming light ­reflected light ~ cos  i ­cos  i = l · n if vectors normalized ­There are also three coefficients, k r, k b, k g that show how much of each color component is reflected

15 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Ideal Reflector Normal is determined by local orientation Angle of incidence = angle of relection The three vectors must be coplanar r = 2 (l · n ) n - l

16 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Specular Surfaces Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors) Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection specular highlight

17 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Modeling Specular Relections Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased  I r ~ k s I cos   shininess coef absorption coef incoming intensity reflected intensity

18 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 The Shininess Coefficient Values of  between 100 and 200 correspond to metals Values between 5 and 10 give surface that look like plastic cos   