Halliday/Resnick/Walker Fundamentals of Physics 8th edition

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM
Advertisements

Chapter 13 Gravitation PhysicsI 2048.
The Beginning of Modern Astronomy
Chapter 8 Gravity.
Gravitation Newton’s Law of Gravitation Superposition Gravitation Near the Surface of Earth Gravitation Inside the Earth Gravitational Potential Energy.
Scores will be adjusted up by 10%
Chapter 7 Rotational Motion and The Law of Gravity.
Rotational Motion and The Law of Gravity
CHAPTER-13 Gravitation.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 6, 2006.
Physics 151: Lecture 28 Today’s Agenda
Chapter 13: Gravitation. Newton’s Law of Gravitation A uniform spherical shell shell of matter attracts a particles that is outside the shell as if all.
Physics 111: Elementary Mechanics – Lecture 12 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Physics 111: Mechanics Lecture 13 Dale Gary NJIT Physics Department.
Chapter 13 Gravitation.
Chapter 13 Gravitation.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
CH 12: Gravitation. We have used the gravitational acceleration of an object to determine the weight of that object relative to the Earth. Where does.
Chapter 7 Tangential Speed
Circular Motion and Gravitation
Rotational Motion and The Law of Gravity
Chapter-5: Circular Motion, the Planets, and Gravity Circular Motion: Centripetal acceleration Centripetal force Newton’s law of universal gravitation.
Newton’s Theory of Gravity and Planetary Motion
Chapter 7 Circular Motion and Gravitation
Physics 111: Mechanics Lecture 13
Universal Gravitation
Universal Gravitation
Chapters 7 & 8 Rotational Motion and The Law of Gravity.
Kepler’s first law of planetary motion says that the paths of the planets are A. Parabolas B. Hyperbolas C. Ellipses D. Circles Ans: C.
Gravity Review.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy.
More on Kepler’s Laws. Can be shown that this also applies to an elliptical orbit with replacement of r with a, where a is the semimajor axis. K s is.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
Gravitation. Gravitational Force and Field Newton proposed that a force of attraction exists between any two masses. This force law applies to point masses.
Chapter 12 Universal Law of Gravity
Cutnell/Johnson Physics 7th edition Reading Quiz Questions
Chapter 7 Rotational Motion and the Law of Gravity
Acceleration is the rate of change of velocity. Acceleration is a vector.
Gravitation AP Physics 1. Newton’s Law of Gravitation What causes YOU to be pulled down? THE EARTH….or more specifically…the EARTH’S MASS. Anything that.
CHAPTER 14 : THE LAW OF GRAVITY 14.1) Newton’s Law of Universal Gravitation Newton’s law of universal gravitation = every particle in the Universe attracts.
Newton’s Law of Universal Gravitation
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Chapter 7 Rotational Motion and The Law of Gravity.
17-1 Physics I Class 17 Newton’s Theory of Gravitation.
Gravity. Unanswered questions Galileo describes falling objects by rolling objects down a ramp. But why does everything accelerate the same rate regardless.
Chapter 7 Rotational Motion and The Law of Gravity.
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Chapter 13 Gravitation.
The Organization of the Solar System and Planetary Motion
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Wednesday, Oct. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #11 Wednesday, Oct. 10, 2007 Dr. Jaehoon Yu Free Fall.
Chapter 7 Rotational Motion and The Law of Gravity.
1 The law of gravitation can be written in a vector notation (9.1) Although this law applies strictly to particles, it can be also used to real bodies.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Circular Motion and Gravitation Chapter 7 Table of Contents Section.
College Physics, 7th Edition
Chapter 13 Gravitation.
Newton’s Law of Universal Gravitation
Chapter-5: Circular Motion, the Planets, and Gravity
PHYS 1443 – Section 003 Lecture #11
Chapter 13 Gravitation.
Universal Gravitation
9. Gravitation 9.1. Newton’s law of gravitation
Chapter 13 Gravitation.
Mechanics Gravitations MARLON FLORES SACEDON.
Gravitation and Newton’s Synthesis
PHYS 1443 – Section 001 Lecture #8
Newton’s Law of Universal Gravitation
Presentation transcript:

Halliday/Resnick/Walker Fundamentals of Physics 8th edition Classroom Response System Questions Chapter 13 Gravitation Reading Quiz Questions

13.2.1. Complete the following statement: Near the surface of the earth, the weight of an object a) is the same as the mass of the object. b) is the gravitational force of the earth on the object. c) has the same value regardless of the altitude above the surface of the earth. d) has the same value regardless of the mass of the object.

13.2.1. Complete the following statement: Near the surface of the earth, the weight of an object a) is the same as the mass of the object. b) is the gravitational force of the earth on the object. c) has the same value regardless of the altitude above the surface of the earth. d) has the same value regardless of the mass of the object.

13. 2. 2. A rock is thrown straight up from the earth's surface 13.2.2. A rock is thrown straight up from the earth's surface. Which one of the following statements concerning the net force acting on the rock at the top of its path is true? a) It is instantaneously equal to zero newtons. b) It is greater than the weight of the rock. c) It is less than the weight of the rock, but greater than zero newtons. d) Its direction changes from up to down. e) It is equal to the weight of the rock.

13. 2. 2. A rock is thrown straight up from the earth's surface 13.2.2. A rock is thrown straight up from the earth's surface. Which one of the following statements concerning the net force acting on the rock at the top of its path is true? a) It is instantaneously equal to zero newtons. b) It is greater than the weight of the rock. c) It is less than the weight of the rock, but greater than zero newtons. d) Its direction changes from up to down. e) It is equal to the weight of the rock.

13.2.3. Two objects with masses m and M are separated by a distance d. If the distance between the objects is increased to 4d, how does the gravitational force between them change? a) The force will be one-half as great. b) The force will be one-forth as great. c) The force will be one-sixteenth as great. d) The force will be four times as great. e) The force will be sixteen times as great.

13.2.3. Two objects with masses m and M are separated by a distance d. If the distance between the objects is increased to 4d, how does the gravitational force between them change? a) The force will be one-half as great. b) The force will be one-forth as great. c) The force will be one-sixteenth as great. d) The force will be four times as great. e) The force will be sixteen times as great.

13.2.4. Two objects with masses m and M are separated by a distance d. If the separation d remains fixed and the masses of the objects are increased to the values 3m and 3M respectively, how does the gravitational force between them change? a) The force will be nine times as great. b) The force will be three times as great. c) The force will be one-third as great. d) The force will be one-ninth as great. e) It is impossible to determine without knowing the numerical values of m, M, and d.

13.2.4. Two objects with masses m and M are separated by a distance d. If the separation d remains fixed and the masses of the objects are increased to the values 3m and 3M respectively, how does the gravitational force between them change? a) The force will be nine times as great. b) The force will be three times as great. c) The force will be one-third as great. d) The force will be one-ninth as great. e) It is impossible to determine without knowing the numerical values of m, M, and d.

13.2.5. Which one of the following statements concerning the two "gravitational constants" G, the universal gravitational constant, and g the magnitude of the acceleration due to gravity is true? a) The values of g and G depend on location. b) The values of g and G do not depend on location. c) The value of g is the same everywhere in the universe, but the value of G is not. d) The values of g and G are equal on the surface of any planet, but in general, vary with location in the universe. e) The value of G is the same everywhere in the universe, but the value of g is not.

13.2.5. Which one of the following statements concerning the two "gravitational constants" G, the universal gravitational constant, and g the magnitude of the acceleration due to gravity is true? a) The values of g and G depend on location. b) The values of g and G do not depend on location. c) The value of g is the same everywhere in the universe, but the value of G is not. d) The values of g and G are equal on the surface of any planet, but in general, vary with location in the universe. e) The value of G is the same everywhere in the universe, but the value of g is not.

13.2.6. Which one of the following statements best explains why the weight of an object of mass m is different on Mars than it is on the Earth? a) The mass of Mars is different from that of Earth. b) The mass m is further from the Earth's center when it is on Mars. c) The mass and radius of Mars are both less than those of Earth. d) The mass m will be different on Mars. e) The constant G is different on Mars.

13.2.6. Which one of the following statements best explains why the weight of an object of mass m is different on Mars than it is on the Earth? a) The mass of Mars is different from that of Earth. b) The mass m is further from the Earth's center when it is on Mars. c) The mass and radius of Mars are both less than those of Earth. d) The mass m will be different on Mars. e) The constant G is different on Mars.

13.2.7. The magnitude of the gravitational force is related to the distance between two objects. Which of the following choices gives the correct relationship between the distance r and the gravitational force? a) r b) r2 c) 1/r d) 1/r2 e) r1/2

13.2.7. The magnitude of the gravitational force is related to the distance between two objects. Which of the following choices gives the correct relationship between the distance r and the gravitational force? a) r b) r2 c) 1/r d) 1/r2 e) r1/2

13. 2. 8. Consider the objects of various masses indicated below 13.2.8. Consider the objects of various masses indicated below. The objects are each separated from another object by the distance indicated. In which of these situations is the gravitational force exerted on the two objects the largest? a) #1 b) #2 c) #3 d) #2 and #3 e) #1, #2, and #3

13. 2. 8. Consider the objects of various masses indicated below 13.2.8. Consider the objects of various masses indicated below. The objects are each separated from another object by the distance indicated. In which of these situations is the gravitational force exerted on the two objects the largest? a) #1 b) #2 c) #3 d) #2 and #3 e) #1, #2, and #3

13.3.1. Given a collection of particles, through what process would one determine the net gravitational force on one of the particles due to the others? a) If the number of particles is odd, then the net force on the particle will be zero since every other particle is paired with another particle. b) The gravitational force of the particle nearest the particle will exert the greatest force and the others are negligible. c) Calculate the gravitational force of each particle on the given particle and add them together as vectors to find the net force. d) Calculate the gravitational force of each particle on the given particle and use the vector cross product to find the net force. e) Multiply the mass of the particle by 9.8 m/s2.

13.3.1. Given a collection of particles, through what process would one determine the net gravitational force on one of the particles due to the others? a) If the number of particles is odd, then the net force on the particle will be zero since every other particle is paired with another particle. b) The gravitational force of the particle nearest the particle will exert the greatest force and the others are negligible. c) Calculate the gravitational force of each particle on the given particle and add them together as vectors to find the net force. d) Calculate the gravitational force of each particle on the given particle and use the vector cross product to find the net force. e) Multiply the mass of the particle by 9.8 m/s2.

13. 3. 2. Consider a system of particles, each of mass m 13.3.2. Consider a system of particles, each of mass m. In which one of the following configurations is the net gravitational force on Particle A the largest? The horizontal or vertical spacing between particles is the same in each case. a) 1 b) 2 c) 3 d) 4 e) 3 and 4 are equally large

13. 3. 2. Consider a system of particles, each of mass m 13.3.2. Consider a system of particles, each of mass m. In which one of the following configurations is the net gravitational force on Particle A the largest? The horizontal or vertical spacing between particles is the same in each case. a) 1 b) 2 c) 3 d) 4 e) 3 and 4 are equally large

13.4.1. Which one of the following choices is not a reason why the acceleration due to gravity g does not have the same value, 9.8 m/s2, everywhere on the surface of the Earth? a) The Earth is rotating about its axis. b) The value of g depends on where the moon is in its orbit. c) The Earth is not spherical. d) The material from which the Earth is composed is not uniformly distributed and is not of uniform density.

13.4.1. Which one of the following choices is not a reason why the acceleration due to gravity g does not have the same value, 9.8 m/s2, everywhere on the surface of the Earth? a) The Earth is rotating about its axis. b) The value of g depends on where the moon is in its orbit. c) The Earth is not spherical. d) The material from which the Earth is composed is not uniformly distributed and is not of uniform density.

13.4.2. Consider an astronaut aboard the International Space Station in orbit around the Earth. Which one of the following statements concerning the gravitational force on the astronaut is true? a) The astronaut experiences a gravitational force that is equal to zero newtons. b) The net gravitational force on the astronaut due to the Earth and the moon is equal to zero newtons. c) The astronaut experiences a gravitational force and a centripetal force of equal magnitude, but in opposite directions, so the net force on the astronaut is zero newtons. d) The astronaut experiences a gravitational force that is less than at the surface of the Earth, but it is greater than zero newtons. e) The astronaut experiences a gravitational force that is the same at that at the surface of the Earth.

13.4.2. Consider an astronaut aboard the International Space Station in orbit around the Earth. Which one of the following statements concerning the gravitational force on the astronaut is true? a) The astronaut experiences a gravitational force that is equal to zero newtons. b) The net gravitational force on the astronaut due to the Earth and the moon is equal to zero newtons. c) The astronaut experiences a gravitational force and a centripetal force of equal magnitude, but in opposite directions, so the net force on the astronaut is zero newtons. d) The astronaut experiences a gravitational force that is less than at the surface of the Earth, but it is greater than zero newtons. e) The astronaut experiences a gravitational force that is the same at that at the surface of the Earth.

13.5.1. Hypothetically speaking, if an object were located at the center of the Earth, the gravitational force on that object of due to the surrounding Earth, assuming matter is uniformly distributed, would have which of the following values? a) The force would be approximately the same value as if the object were on the surface of the Earth. b) The force would be much greater than the value if the object were on the surface of the Earth. c) The force would be somewhat less than the value if the object was on the surface of the Earth, but it would be greater than zero newtons. d) The force would be zero newtons.

13.5.1. Hypothetically speaking, if an object were located at the center of the Earth, the gravitational force on that object of due to the surrounding Earth, assuming matter is uniformly distributed, would have which of the following values? a) The force would be approximately the same value as if the object were on the surface of the Earth. b) The force would be much greater than the value if the object were on the surface of the Earth. c) The force would be somewhat less than the value if the object was on the surface of the Earth, but it would be greater than zero newtons. d) The force would be zero newtons.

13. 5. 2. Consider the Earth with its mass non-uniformly distributed 13.5.2. Consider the Earth with its mass non-uniformly distributed. Now imagine the hypothetical situation in which a shaft was constructed deep into the Earth’s interior. Which of the following observations concerning the gravitational force on a particle descending the shaft would be true? a) The net gravitational force on the particle would continually decrease as the particle descends the shaft. b) The net gravitational force on the particle would continually increase as the particle descends the shaft. c) The net gravitational force on the particle would initially increase as the particle descends the shaft, but then decrease as it continues its descent. d) The net gravitational force on the particle would initially decrease as the particle descends the shaft, but then increase as it continues its descent. e) At any point below the surface of the Earth, the net gravitational force on the particle would be equal to zero newtons.

13. 5. 2. Consider the Earth with its mass non-uniformly distributed 13.5.2. Consider the Earth with its mass non-uniformly distributed. Now imagine the hypothetical situation in which a shaft was constructed deep into the Earth’s interior. Which of the following observations concerning the gravitational force on a particle descending the shaft would be true? a) The net gravitational force on the particle would continually decrease as the particle descends the shaft. b) The net gravitational force on the particle would continually increase as the particle descends the shaft. c) The net gravitational force on the particle would initially increase as the particle descends the shaft, but then decrease as it continues its descent. d) The net gravitational force on the particle would initially decrease as the particle descends the shaft, but then increase as it continues its descent. e) At any point below the surface of the Earth, the net gravitational force on the particle would be equal to zero newtons.

13.6.1. The magnitude of the gravitational potential energy is related to the distance from an object of mass M. Which of the following choices gives the correct relationship between the distance r and the gravitational potential energy? a) r b) r2 c) 1/r d) 1/r2 e) r1/2

13.6.1. The magnitude of the gravitational potential energy is related to the distance from an object of mass M. Which of the following choices gives the correct relationship between the distance r and the gravitational potential energy? a) r b) r2 c) 1/r d) 1/r2 e) r1/2

13. 6. 2. Consider the objects of various masses indicated below 13.6.2. Consider the objects of various masses indicated below. The objects are each separated from another object by the distance indicated. In which of these situations is the gravitational potential energy of the two objects the smallest? a) #1 b) #2 c) #3 d) #2 and #3 e) #1, #2, and #3

13. 6. 2. Consider the objects of various masses indicated below 13.6.2. Consider the objects of various masses indicated below. The objects are each separated from another object by the distance indicated. In which of these situations is the gravitational potential energy of the two objects the smallest? a) #1 b) #2 c) #3 d) #2 and #3 e) #1, #2, and #3

13.7.1. Which one of the following statements concerning Kepler’s Law of Orbits is true? a) All planets move in elliptical orbits, with the Sun at one focus. b) All planets move in circular orbits, with the Sun at the center. c) All planets move in elliptical orbits, with the planet at one focus. d) All planets move in circular orbits around the center of mass of the solar system. e) All planets move in helical orbits, with the Sun at one end of the helix.

13.7.1. Which one of the following statements concerning Kepler’s Law of Orbits is true? a) All planets move in elliptical orbits, with the Sun at one focus. b) All planets move in circular orbits, with the Sun at the center. c) All planets move in elliptical orbits, with the planet at one focus. d) All planets move in circular orbits around the center of mass of the solar system. e) All planets move in helical orbits, with the Sun at one end of the helix.

13.7.2. Which one of the following statements represents the Law of Areas? a) In their orbits about the Sun, every planet sweeps out the same equal area in the same equal amount of time. b) A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet’s orbit in equal time intervals. c) The surface area of a planet is directly proportional to the square of its orbit about the Sun. d) Every planet sweeps out the same area in a one Earth year period, making one complete orbit about the Sun. e) The area swept by the orbit of the Sun is equal to the sum of the areas swept by the planets during one Earth year period.

13.7.2. Which one of the following statements represents the Law of Areas? a) In their orbits about the Sun, every planet sweeps out the same equal area in the same equal amount of time. b) A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet’s orbit in equal time intervals. c) The surface area of a planet is directly proportional to the square of its orbit about the Sun. d) Every planet sweeps out the same area in a one Earth year period, making one complete orbit about the Sun. e) The area swept by the orbit of the Sun is equal to the sum of the areas swept by the planets during one Earth year period.

13.7.3. Which one of the following statements represents the Law of Periods? a) The orbital period of a satellite in orbit of a planet is inversely proportional to its mass. b) The period of a planet in its orbit about the Sun is directly proportional to the radius of its orbit. c) The rotational period of the Sun equals the sum of the rotational periods of the planets. d) Every planet sweeps out the same area in a one Earth year period, making one complete orbit about the Sun. e) The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

13.7.3. Which one of the following statements represents the Law of Periods? a) The orbital period of a satellite in orbit of a planet is inversely proportional to its mass. b) The period of a planet in its orbit about the Sun is directly proportional to the radius of its orbit. c) The rotational period of the Sun equals the sum of the rotational periods of the planets. d) Every planet sweeps out the same area in a one Earth year period, making one complete orbit about the Sun. e) The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

13. 8. 1. Consider the orbits shown in the drawing 13.8.1. Consider the orbits shown in the drawing. Each of the orbits has the same length semimajor axis, but differs in the eccentricities, which are given. In which of these orbits would an object have the greatest total mechanical energy, if any? a) All of the orbits have the same total energy. b) e = 0 c) e = 0.5 d) e = 0.8 e) e = 0.9

13. 8. 1. Consider the orbits shown in the drawing 13.8.1. Consider the orbits shown in the drawing. Each of the orbits has the same length semimajor axis, but differs in the eccentricities, which are given. In which of these orbits would an object have the greatest total mechanical energy, if any? a) All of the orbits have the same total energy. b) e = 0 c) e = 0.5 d) e = 0.8 e) e = 0.9

13.9.1. Which one of the following statements describes the Principle of Equivalence? a) Objects in two different reference frames are equivalent. b) The square of the period of a planet is proportional to the cube of the planet’s semi-major axis. c) All motion is relative. d) All planets move in equivalent elliptical orbits. e) Acceleration and gravitation are equivalent.

13.9.1. Which one of the following statements describes the Principle of Equivalence? a) Objects in two different reference frames are equivalent. b) The square of the period of a planet is proportional to the cube of the planet’s semi-major axis. c) All motion is relative. d) All planets move in equivalent elliptical orbits. e) Acceleration and gravitation are equivalent.

13.9.2. To which one of the following is gravity equivalent, according to the Principle of Equivalence? a) velocity b) free-fall c) net force d) acceleration e) energy

13.9.2. To which one of the following is gravity equivalent, according to the Principle of Equivalence? a) velocity b) free-fall c) net force d) acceleration e) energy