Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.

Slides:



Advertisements
Similar presentations
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Advertisements

Optical sources Lecture 5.
All-Silicon Active and Passive Guided-Wave Components
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Resonant gratings for narrow band pass filtering applications
Properties of Photonic and Plasmonic Resonance Devices Jae Woong Yoon, Kyu Jin Lee, Manoj Niraula, Mohammad Shyiq Amin, and Robert Magnusson Dept. of Electrical.
Optical Fiber Communications
OPTICAL COMPONENTS 9/20/11. Applications See notes.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Apertureless Scanning Near-field Optical Microscopy: a comparison between homodyne and heterodyne approaches Journal Club Presentation – March 26 th, 2007.
Properties of Multilayer Optics An Investigation of Methods of Polarization Analysis for the ICS Experiment at UCLA 8/4/04 Oliver Williams.
Radius of Curvature: 900 micron Fig. 1 a.) Snell’s Law b.) Total Internal Reflection a. b. Modeling & Fabrication of Ridge Waveguides and their Comparison.
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Fiber Optic Light Sources
Thin Film Measurement Facilities Flavio Travasso N.i.p.s laboratory - Università di Perugia and INFN Perugia Flavio Travasso N.i.p.s laboratory - Università.
Optical Components Ajmal Muhammad, Robert Forchheimer
Modern Optics IV-coherence Special topics course in IAMS Lecture speaker: Wang-Yau Cheng 2006/4.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Overview of Research in the Optics Working Group Gregory Harry, on behalf of the OWG Massachusetts Institute of Technology July 25, 2007 LSC Meeting –
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
Lecture 6.
Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Rochester Institute of Technology Microelectronic.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Realization of an All-Dielectric Zero-Index Optical Metamaterial P. Moitra, Y. Yang, Z.Anderson, I.I.Kravchenko, D.B.Briggs, J.Valentine, Nature Photonics,
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
1 Large Aperture Dielectric Gratings for High Power LIGO Interferometry LSC/Virgo Meeting, Baton Rouge March 19-22, 2007 Optics Working Group Jerald A.
PACS SVR 22/23 June 2006 PACS FPU Subunits1 FM FPU Subunits A. Poglitsch.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Interference in Thin Films, final
Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac,
Multiple interference Optics, Eugene Hecht, Chpt. 9.
Cascaded Solid Spaced Filters for DWDM applications
Class overview: Brief review of physical optics, wave propagation, interference, diffraction, and polarization Introduction to Integrated optics and integrated.
1st Advanced Virgo Review – November 3-4, 2008 – L. Pinard 1 Mirrors Sub-System Overview  Introduction  Scope of the subsystem, main tasks  Substrates.
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Meeting 2014-October WP1 INL : Simulation for Laser Interference Lithography sample (PI32) -2. Possible alternative: patterning of the front electrode.
2. Design Determine grating coupler period from theory: Determine grating coupler period from theory: Determine photonic crystal lattice type and dimensions.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto & Giancarlo Cella INFN- Pisa.
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Optical Coatings for Gravitational Wave Detection Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration - August.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Materials 2 G. Cole (Vienna) – Crystalline Coatings S. Koker (Jena) – Waveguide Coatings R. Nawrodt (Jena) – Silicon research GWADW 2011 – La Biodola,
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Substrates and nano-structured surfaces for future GW observatories
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
A look at interferometer topologies that use reflection gratings
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Nanostructured Optics
Homodyne or heterodyne Readout for Advanced LIGO?
Anti-Reflective Coatings
Presentation transcript:

Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann

Coating-reduced interferometer optics Outline Outline RWGs as mirrors Advanced grating concepts Fabrication Optical losses Summary & Outlook 2

Coating-reduced interferometer optics Introduction Introduction – coating thermal noise strain sensitivity frequency seismic / radiation pressure shot noise coating thermal noise 3

Introduction – reducing coating thermal noise conventional: dielectric amorphous multilayer stack reflectivity % reflectivity Brownian coating thermal noise multiple beam interference: Harry et al., CQG (2002) SiO 2 /Ta 2 O 5 ~ 3…8 µm Coating-reduced interferometer optics Introduction 1.Possibility- optimization materials: crystalline coatings (Al x GaAs) See talk by G. Cole! crystalline 4

Coating-reduced interferometer optics Introduction - RWGs <1 µm high-index low-index Popov et al., Opt. Comm.(1985) Brückner et al., PRL (2010) 2.Possibility- alternative optical concepts + material optimization: Resonant waveguide gratings (RWGs) Origin: weakly modulated high-index grating on low-index substrate (narrow band) Stronger modulation : larger bandwidth Replace low-index substrate Replace low-index material 5 no coating

Coating-reduced interferometer optics RWG mirrors Tantala grating on silica for 1064 nm Monolithic silicon gratings for 1550 nm Friedrich et al., Opt. Express (2011) Brückner et al., Opt. Express (2008) Brückner et al., PRL (2010) reflectivity measurements in cavity RWGs as mirrors – so far 6

Stabilized PDH-error signal Reflected light D.Friedrich et al. Opt. Express 19, (2011) Finesse= 790 (±100) → R ≥ 99.2(±0.1)% Cavity stabilization with standard PDH-technique Coating-reduced interferometer optics Characterization of RWGs 7 Tantala RWG

nhnh nlnl transmission 7 n= 1 Functionality of RWGS – horizontal modes ~ 100% reflectivity silicon as high-index material (n h =1550 nm) 0 th diffraction order outside grating 1 st diffraction orders in grating 1 p… grating period Coating-reduced interferometer optics Functionality of RWGs / n h <p< /n l

Botten et al., Opt. Act. (1981) periodic array of slab waveguide 2 nd mode grating ridge Functionality of RWGS – vertical (Bloch-) modes fundamental mode 1 st mode x z TM-Modes incident light Coating-reduced interferometer optics Functionality of RWGs 9

Effective index dependent on: -fill factor -period/ wavelength -polarisation -angle of incidence High efficiency: 2 propagating modes (n eff 2 >0) 1 propagating mode TM-polarization 2 modes in upper layer x Coating-reduced interferometer optics Functionality of RWGs 10 1 mode in lower layer

mechanism for R=100%: phase difference due to different effective indizes (different k z ), reflection/ interference at boundaries no additional phase in lower grating Amplitudes of grating modes need to cancel out x z Lalanne, J. Lightwave Tech. (2006) Karagodsky et al., Opt. Express (2009) exact intensities and phases + physical insight incident light Coating-reduced interferometer optics Functionality of RWGs 11

12 Feel free to join! D. Friedrich K. Yamamoto S. Vyatchanin S. Hild … interaction of light with surface structure… Coating-reduced interferometer optics RWGs D. Heinert R. Nawrodt S. Kroker

1 µm platinum 240 nm pre-structured wafer depth gratingLIGO ROC (m)0.6 ~ 2000 r Mirror (m) depth (µm) ~ 10 ~7~7 Coating-reduced interferometer optics Advanced grating concepts -Focusing Mirrors maximum reflectivity : 97% ( =1396 nm,  =5°) resonance to larger wavelength with larger period/thickness... Mirrors on Curved Substrates 13

10 grating 1 grating 2 Thickness determines wavelength/ angle of max. reflection entire system? 1. stacked RWGs enhance angular/ spectral bandwidths enhance experimentally feasible reflectivity Coating-reduced interferometer optics Advanced grating concepts – stacked RWGS

2. RWGs with 2D periodicity Coating-reduced interferometer optics Advanced Grating Concepts - 2D RWGs basis for flat focusing mirrors 1 µm 2d a-Si grating 15

Combination von highly efficient mirrors with diffraction grating high Finesse  only weak perturbation only 0 th order Highly efficient mirror Diffraction grating 0 th, ±1 st orders transversal modulation: Grating depth lateral Modulation: Ridge width/ -position Coating-reduced interferometer optics Diffractive elements 16 High angular tolerance of reflector necessary p mirror < p diff = 

electron- beamresist siliconSiO 2 electronbeam- lithography + development anisotropic etching process+ sidewall passivation isotropic etching process Fabrication chromium More complex structures? 5 µm Coating-reduced interferometer optics Fabrication 2 µm 17

R=(99.8±0.01)% material properties structure deviations systematic (ridgewidth/-depth) transmission stochastic (line edge roughness) scattered light absorption 2 µm Coating-reduced interferometer optics Optical losses Where is the missing light? 18 See talk by J. Komma!

HSQ (1300 µC/cm 2 ) high sensitivity (60 e - /100 nm 2 ) 100 nm ridges and grooves Line edge roughness due to particle statistics in the lithographic process 10nm electron impacts low sensitivity (8000 e - /100 nm 2 ) FEP 171 (9.5 µC/cm 2 ) 18 M. Heusingen, diploma thesis (2011) Coating-reduced interferometer optics Optical losses

Grating accuracy nm nm 19 mm 50mm position [mm] period variation (pm) period variation < 5 pm wave-front measurement (1 µm period grating + technology, Littrow-Mount, =633 nm) significantly better than interferometric gratings Coating-reduced interferometer optics Optical losses wavefrontplacement PV12.8 nm< 10.3 nm rms1.4 nm< 1.1 nm 20

21 Sophisticated device for measurement of scattered light ALBATROSS at Fraunhofer Institute IOF Measurements of scattered light at 1550 nm set up right now! Coating-reduced interferometer optics Optical losses

Summary Coating-reduced interferometer optics Summary RWGs capable of providing high reflectivity Experiments for higher R running Origin of optical losses to be identified Thermal noise to be investigated 22