Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry,
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
65th OSU International Symposium on Molecular Spectroscopy RH14.
1 The Structure and Ring Puckering Barrier of Cyclobutane: A Theoretical Study Sotiris S. Xantheas, Thomas A. Blake Environmental Molecular Sciences Laboratory.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Fitting the high-resolution spectroscopic data for NCNCS Zbigniew Kisiel, a Brenda P. Winnewisser, b Manfred Winnewisser, b Frank C. De Lucia, b Dennis.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
64 th OSU International Symposium on Molecular Spectroscopy.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Towards understanding quantum monodromy in quasi-symmetric molecules: FASSST rotational spectra of CH 3 NCO and CH 3 NCS Zbigniew Kisiel, a Sarah Fortman,
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
A b (+c)(+c) cbacbaz acbbacy bacacbx III l IIlIIl IlIl III r IIrIIr IrIr ~ y~ y ~ x~ x Rotational spectrum of FCO 2 molecule with resolved fs and hfs in.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Laboratory of Millimetre-wave Spectroscopy of Bologna LABORATORY MEASUREMENTS in SUPPORT of ASTRONOMICAL OBSERVATIONS: ROTATIONAL SPECTROSCOPY up to the.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Theoretical and Computational Chemistry Group, Scuola Normale Superiore, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Pisa, ITALY Vincenzo.
1 61 st International Symposium on Molecular Spectroscopy, Talk RD10, 22 June 2006, The Ohio State University, Columbus, OH Approved for Public Release;
P. JANSEN, W. UBACHS, H. L. BETHLEM
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Torsion-mediated spin-rotation hyperfine splittings in methanol (at moderate to high J values) Li-Hong Xu – University of New Brunswick 2 expt labs: NNOV.
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
International Symposium on Molecular Spectroscopy
Theoretical Prediction of the Rotational Constants for
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
THE STRUCTURE OF PHENYLGLYCINOL
Millimeter-Wave Spectrum of Pyrimidine
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY: the NEED of the INTERPLAY between EXPERIMENT and THEORY Int. Symposium on Molecular Spectroscopy 66th Meeting – Columbus, OH – June 20-24, 2011

Laboratory of Millimetre-wave Spectroscopy of Bologna OUTLINE 1) QUANTUM-CHEMICAL CALCULATIONS: CALCULATIONS: Some details Some details 2) INTERPLAY between EXPERIMENT and THEORY: EXPERIMENT and THEORY: The need: why The need: why

Laboratory of Millimetre-wave Spectroscopy of Bologna OUTLINE 1) QUANTUM-CHEMICAL CALCULATIONS: CALCULATIONS: Some details Some details 2) INTERPLAY between EXPERIMENT and THEORY: EXPERIMENT and THEORY: The need: why The need: why

QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS For ROTATIONAL SPECTROSCOPY: the NEED of the INTERPLAY between EXPERIMENT and THEORY Int. Symposium on Molecular Spectroscopy 66th Meeting – Columbus, OH – June 20-24, 2011

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Rotational constants

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Rotational constants RIGID ROTOR + CENTRIFUGAL DISTORTION

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Nuclear quadrupole coupling            K KK K JK JJII qeQ )12()12(22 1 JIJIJI Rotational constants + Centrif.distort. constants

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Rotational constants + Centrif.distort. constants Nuclear quadrupole coupling            K KK K JK JJII qeQ )12()12(22 1 JIJIJI Spin-rotation interactions  K KK JCI

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Spin-spin (direct) interactions interactions Nuclear quadrupole coupling            K KK K JK JJII qeQ )12()12(22 1 JIJIJI Spin-rotation interactions  K KK JCI Rotational constants + Centrif.distort. constants

Laboratory of Millimetre-wave Spectroscopy of Bologna Rotational Hamiltonian Spin-spin (direct) interactions interactions Nuclear quadrupole coupling            K KK K JK JJII qeQ )12()12(22 1 JIJIJI Spin-rotation interactions  K KK JCI Rotational constants + Centrif.distort. constants

Accuracy of Theoretical Rotational Constants STATISTICAL ANALYSIS for 16 molecules (97 isotopologues) 16 molecules (97 isotopologues) 180 rotational constants 180 rotational constants Reference values: B 0 from experiment HF, N 2, C  O, F 2, HC  N, HN  C, O=C=O, H 2 O, NH 3, CH 4, HC  CH, HOF, HNO, NH=NH, CH 2 =CH 2, H 2 C=O C. Puzzarini, M. Heckert, J. Gauss JCP 128, (2008)

Laboratory of Millimetre-wave Spectroscopy of Bologna CCSD(T)/VTZ CCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V6Z CCSD(T)/V6Z + CV CCSD(T)/V6Z + CV + fT + fQ + fQ CCSD(T)/V  Z + CV + fT + fQ + fQ CCSD(T)/V  Z + CV + fT + fQ + vib + fQ + vib CCSD(T)/V  Z + CV + fT + fQ + vib + ele + fQ + vib + ele B 0 calc vs B 0 exp normal distributions of relative errors C. Puzzarini, M. Heckert, J. Gauss JCP 128, (2008)

Laboratory of Millimetre-wave Spectroscopy of Bologna B 0 calc vs B 0 exp normal distributions of relative errors CCSD(T)/V  Z + CV + CV + fT + fT + fQ + fQ + vib + vib + ele + ele mean error % standard deviation 0.09% CCSD(T)/V6Z + CV + CV + fT + fT + fQ + fQ mean error 0.70% standard deviation 0.75% C. Puzzarini, M. Heckert, J. Gauss JCP 128, (2008)

C2C2 C4C4 C5C5 C6C6 N1N1 N3N3 O7O7 O8O8 H11 H12 H9H9 b a H10 COMPOSITE APPROACH extended to large molecule URACIL

 Equilibrium Rotational Constants MP2/cc-pV(T,Q)Z MP2/cc-pCVTZ MP2/aug-cc-pVTZ CCSD(T)/cc-pVTZ  Vibrational Corrections to Rotational Constants B3LYP/N07DMP2/cc-pVTZ

CalculatedExperiment A0A0A0A0MHz (60) B0B0B0B0MHz (45) C0C0C0C0MHz (33) DJDJDJDJkHz (44) D JK kHz (23) DKDKDKDKkHz (32) d1d1d1d1kHz (18) d2d2d2d2kHz (13)  aa MHz (25)  bb MHz (29)  aa MHz (24)  bb MHz (32) Puzzarini & Barone, PCCP 13, 7158 (2011) URACIL <0.2%

COMPOSITE APPROACH extended to large molecule  Equilibrium Rotational Constants MP2/cc-pV(T,Q)Z MP2/cc-pCVTZ MP2/aug-cc-pVTZ CCSD(T)/cc-pVTZ  Vibrational Corrections to Rotational Constants B3LYP/N07DMP2/cc-pVTZ  Centrifugal-Distortion Constants CVdiffuse Puzzarini & Barone, PCCP 13, 7158 (2011)

CalculatedExperiment A0A0A0A0MHz (60) B0B0B0B0MHz (45) C0C0C0C0MHz (33) DJDJDJDJkHz (44) D JK kHz (23) DKDKDKDKkHz (32) d1d1d1d1kHz (18) d2d2d2d2kHz (13)  aa MHz (25)  bb MHz (29)  aa MHz (24)  bb MHz (32) ~1% URACIL Puzzarini & Barone, PCCP 13, 7158 (2011)

Laboratory of Millimetre-wave Spectroscopy of Bologna OUTLINE 1) QUANTUM-CHEMICAL CALCULATIONS: CALCULATIONS: Some details Some details 2) INTERPLAY between EXPERIMENT and THEORY: EXPERIMENT and THEORY: The need: why The need: why

Laboratory of Millimetre-wave Spectroscopy of Bologna INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy Assignment of “unknown” spectra Assignment of “unknown” spectra

 Analyze the spectra: ITERATIVE PROCEDURE Calculated spectrum  Preliminary assignments  Improved calculated spectrum  Further assignments …… Complete assignment AABS package Kisiel, Pszczolkowski, Medvedev, Winnewisser, De Lucia, Herbst, J. Mol. Spectrosc. 233, 231 (2005) GRAPHYCAL SUPPORT

trans-CH 35 Cl=CHF Unknown spectrosocpic parameters … Need: accurate estimate of rotational parameters parameters, dipole moment & quadrupole coupling constants from ab initio computations - Accurate equilibrium structure (B e ) - Accurate centrifugal-distortion constants - Accurate vibrational corrections (B e  B 0 )

trans-CH 35 Cl=CHF Unknown spectrosocpic parameters … Need: accurate estimate of rotational parameters parameters, dipole moment & quadrupole coupling constants from ab initio computations Need: accurate estimate of rotational parameters & dipole moment

Laboratory of Millimetre-wave Spectroscopy of Bologna For a detailed example: LISTEN to next TALK “Rotational Spectrum of CH 2 FI” C. Puzzarini et al., JCP 134, (2011)

Laboratory of Millimetre-wave Spectroscopy of Bologna INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy Hyperfine structure of rotational spectra Hyperfine structure of rotational spectra

Laboratory of Millimetre-wave Spectroscopy of Bologna 2 non-equivalent hydrogens (I 1 = I 2 = 1/2) HFS of trans-HCOOH Cazzoli, Puzzarini, Stopkowicz & Gauss, A & A 520, A64 (2010)

Laboratory of Millimetre-wave Spectroscopy of Bologna J.-C. Chardon, C. Genty, D. Guichon, & J.-G. Theobald, J. Chem. Phys. 64, 1434 (1976) “rf spectrum and hyperfine structure of formic acid”

Laboratory of Millimetre-wave Spectroscopy of Bologna J.-C. Chardon, C. Genty, D. Guichon, & J.-G. Theobald, J. Chem. Phys. 64, 1434 (1976) ????

Laboratory of Millimetre-wave Spectroscopy of Bologna J.-C. Chardon, C. Genty, D. Guichon, & J.-G. Theobald, J. Chem. Phys. 64, 1434 (1976) What does Quantum Chemistry say?

Laboratory of Millimetre-wave Spectroscopy of Bologna Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV correction [additivity] - vibrational correction [ff: correlated method] method]

Laboratory of Millimetre-wave Spectroscopy of Bologna

Laboratory of Millimetre-wave Spectroscopy of Bologna

Laboratory of Millimetre-wave Spectroscopy of Bologna

Laboratory of Millimetre-wave Spectroscopy of Bologna ExperimentTheory RF results C aa [H(C)] (46)-7.02 C bb [H(C)] C cc [H(C)] (96)-0.82 C aa [H(O)] (45)-6.94 C bb [H(O)] 0.781(20)0.77 C cc [H(O)] (15)  D aa 4.49(12) (D bb – D cc )/ (35) Equil: CCSD(T)/CV5Z + Equil: CCSD(T)/CV5Z + Vib. Corr: CCSD(T)/CVTZ Hyperfine parameters of trans-HCOOH

Laboratory of Millimetre-wave Spectroscopy of Bologna ExperimentTheory RF results C aa [H(C)] (46) (20) C bb [H(C)] C cc [H(C)] (96)-0.82 C aa [H(O)] (45) (20) C bb [H(O)] 0.781(20)0.77 C cc [H(O)] (15)  D aa 4.49(12) (D bb – D cc )/ (35) Equil: CCSD(T)/CV5Z + Equil: CCSD(T)/CV5Z + Vib. Corr: CCSD(T)/CVTZ Hyperfine parameters of trans-HCOOH

Laboratory of Millimetre-wave Spectroscopy of Bologna ExperimentTheory RF results C aa [H(C)] (46) (20) C bb [H(C)] (40) C cc [H(C)] (96) (40) C aa [H(O)] (45) (20) C bb [H(O)] 0.781(20) (40) C cc [H(O)] (15) (40) 1.5  D aa 4.49(12) (D bb – D cc )/ (35) Hyperfine parameters of trans-HCOOH Cazzoli, Puzzarini, Stopkowicz, Gauss, A & A 520, A64 (2010)

Puzzarini, Cazzoli, Harding, Vázquez & Gauss, JCP 131, (2009) H 2 17 O:

Laboratory of Millimetre-wave Spectroscopy of Bologna Results Results Lamb-dip spectra recorded Hyperfine parameters computed Spectra analysis Spectra analysis & assignment ITERATIVELY + GRAPHYCAL SUPPORT

Laboratory of Millimetre-wave Spectroscopy of Bologna INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy INTERPLAY INTERPLAYof Theory and Experiment in Rotational Spectroscopy Determination of equilibrium structure Determination of equilibrium structure

“Empirical” equilibrium structure from EXPERIMENT (various isotopic species) from THEORY (cubic force field) Accuracy: experimental quality Pawłowski, Jørgensen, Olsen, Hegelund, Helgaker, Gauss, Bak, Stanton JCP (2002) FIT

C2C2 C4C4 C5C5 C6C6 N1N1 N3N3 O7O7 O8O8 H11 H12 H9H9 b a H10 Semi-exp equilibrium structure of large molecule URACIL: 21 independent geometrical parameters Isotopic substitution: - 16 O  18 O - 14 N  15 N - 12 C  13 C 10 isotopic species 20 rotational constants Puzzarini & Barone, PCCP 13, 7158 (2011) Vaquero, Sanz, López, Alonso, J. Phys. Chem. Lett. 111A, 3443 (2007).

Best est. r e a Semi-exp. r e b Exp. r s c Fit 1Fit 2Fit 3 Distances N1-C (53) (65) (51)1.386(5) C2-N N3-C (40) (47) (45)1.38(2) C4-C (57) (99) (57)1.451(4) C5-C (59) (107) (58)1.379(4) C6-N (55) (100) (66)1.352(14) C2-O (21) (26) (21)1.219(4) C4-O (24) (34) (24)1.22(2) N1-H  (70)  N3-H  (96)  C5-H  (52) C6-H  (32) Angles C2-N1-C (19) (35) (21)123.0(11) N1-C6-C (10) (10) (97)122.3(6) C6-C5-C (16) (20) (16)118.8(12) C5-C4-N (22) (33) (22)115.4(16) C4-N3-C N3-C2-N N1-C2-O (44) (54) (42)122.3(8) C5-C4-O (48) (75) (45)118.8(7) C2-N1-H  C2-N3-H  (40)  C6-C5-H  N1-C6-H  Non-determinable Parameters: fixed at the corresponding theo values

Laboratory of Millimetre-wave Spectroscopy of Bologna THANK YOU for your attention!! THANK YOU for your attention!!

Electronic contribution to B g  = rotational g tensor m e = mass of the electron m p = mass of the proton  =x,y,z princ. inertia system CCSD(T) calc: Gauss, Ruud, Kallay, JCP 127, (2007)