Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li,

Slides:



Advertisements
Similar presentations
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Advertisements

Detecting Faces in Images: A Survey
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko.
AdaBoost & Its Applications
Face detection Many slides adapted from P. Viola.
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
The Viola/Jones Face Detector Prepared with figures taken from “Robust real-time object detection” CRL 2001/01, February 2001.
The Viola/Jones Face Detector (2001)
Rapid Object Detection using a Boosted Cascade of Simple Features
Generic Object Detection using Feature Maps Oscar Danielsson Stefan Carlsson
Robust Real-time Object Detection by Paul Viola and Michael Jones ICCV 2001 Workshop on Statistical and Computation Theories of Vision Presentation by.
Face detection and recognition Many slides adapted from K. Grauman and D. Lowe.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Learning and Vision: Discriminative Models
Adaboost and its application
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Robust Real-Time Object Detection Paul Viola & Michael Jones.
Viola and Jones Object Detector Ruxandra Paun EE/CS/CNS Presentation
Foundations of Computer Vision Rapid object / face detection using a Boosted Cascade of Simple features Presented by Christos Stoilas Rapid object / face.
Face Detection CSE 576. Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
FACE DETECTION AND RECOGNITION By: Paranjith Singh Lohiya Ravi Babu Lavu.
Kullback-Leibler Boosting Ce Liu, Hueng-Yeung Shum Microsoft Research Asia CVPR 2003 Presented by Derek Hoiem.
Face Detection using the Viola-Jones Method
Face Alignment Using Cascaded Boosted Regression Active Shape Models
CS 231A Section 1: Linear Algebra & Probability Review
Part 3: discriminative methods Antonio Torralba. Overview of section Object detection with classifiers Boosting –Gentle boosting –Weak detectors –Object.
Recognition using Boosting Modified from various sources including
Detecting Pedestrians Using Patterns of Motion and Appearance Paul Viola Microsoft Research Irfan Ullah Dept. of Info. and Comm. Engr. Myongji University.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Sign Classification Boosted Cascade of Classifiers using University of Southern California Thang Dinh Eunyoung Kim
Benk Erika Kelemen Zsolt
Lecture 29: Face Detection Revisited CS4670 / 5670: Computer Vision Noah Snavely.
Face detection Slides adapted Grauman & Liebe’s tutorial
BOOSTING David Kauchak CS451 – Fall Admin Final project.
ECE738 Advanced Image Processing Face Detection IEEE Trans. PAMI, July 1997.
Tony Jebara, Columbia University Advanced Machine Learning & Perception Instructor: Tony Jebara.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko slides adapted from Svetlana Lazebnik.
Lecture notes for Stat 231: Pattern Recognition and Machine Learning 1. Stat 231. A.L. Yuille. Fall 2004 AdaBoost.. Binary Classification. Read 9.5 Duda,
Adaboost and Object Detection Xu and Arun. Principle of Adaboost Three cobblers with their wits combined equal Zhuge Liang the master mind. Failure is.
E NSEMBLE L EARNING : A DA B OOST Jianping Fan Dept of Computer Science UNC-Charlotte.
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
The Viola/Jones Face Detector A “paradigmatic” method for real-time object detection Training is slow, but detection is very fast Key ideas Integral images.
Bibek Jang Karki. Outline Integral Image Representation of image in summation format AdaBoost Ranking of features Combining best features to form strong.
Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.
FACE DETECTION : AMIT BHAMARE. WHAT IS FACE DETECTION ? Face detection is computer based technology which detect the face in digital image. Trivial task.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko slides adapted from Svetlana Lazebnik.
CS-498 Computer Vision Week 9, Class 2 and Week 10, Class 1
Notes on HW 1 grading I gave full credit as long as you gave a description, confusion matrix, and working code Many people’s descriptions were quite short.
A Brief Introduction on Face Detection Mei-Chen Yeh 04/06/2010 P. Viola and M. J. Jones, Robust Real-Time Face Detection, IJCV 2004.
(Courtesy Boris Babenko)
Boosting ---one of combining models Xin Li Machine Learning Course.
Face detection Many slides adapted from P. Viola.
Face Detection and Recognition Reading: Chapter and, optionally, “Face Recognition using Eigenfaces” by M. Turk and A. Pentland.
AdaBoost Algorithm and its Application on Object Detection Fayin Li.
Recognition Part II: Face Detection via AdaBoost Linda Shapiro CSE
Things iPhoto thinks are faces
2. Skin - color filtering.
Cascade for Fast Detection
License Plate Detection
Recognition Part II: Face Detection via AdaBoost
Session 7: Face Detection (cont.)
Learning to Detect Faces Rapidly and Robustly
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei.
Face Detection via AdaBoost
ADABOOST(Adaptative Boosting)
Lecture 29: Face Detection Revisited
Presentation transcript:

Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li, Antonio Torralba, Paul Viola, David Lowe, Gabor Melli (by way of the Internet) for slides

Face Detection

Sliding Windows 1. hypothesize: try all possible rectangle locations, sizes 2. test: classify if rectangle contains a face (and only the face) Note: 1000's more false windows then true ones.

Classification (Discriminative) Faces Background In some feature space

Image Features 4 Types of “Rectangle filters” (Similar to Haar wavelets Papageorgiou, et al. ) Based on 24x24 grid: 160,000 features to choose from g(x) = sum(WhiteArea) - sum(BlackArea)

Image Features F(x) = α 1 f 1 (x) + α 2 f 2 (x) +... f i (x) = 1 if g i (x) > θ i -1 otherwise Need to: (1) Select Features i=1..n, (2) Learn thresholds θ i, (3) Learn weights α i

A Peak Ahead: the learned features

Why rectangle features? (1) The Integral Image The integral image computes a value at each pixel (x,y) that is the sum of the pixel values above and to the left of (x,y), inclusive. This can quickly be computed in one pass through the image (x,y)

Why rectangle features? (2) Computing Sum within a Rectangle Let A,B,C,D be the values of the integral image at the corners of a rectangle Then the sum of original image values within the rectangle can be computed: sum = A – B – C + D Only 3 additions are required for any size of rectangle! –This is now used in many areas of computer vision DB C A

Boosting How to select the best features? How to learn the classification function? F(x) = α 1 f 1 (x) + α 2 f 2 (x) +....

Defines a classifier using an additive model: Boosting Strong classifier Weak classifier Weight Features vector

Each data point has a class label: w t =1 and a weight: +1 ( ) -1 ( ) y t = Boosting It is a sequential procedure: x t=1 x t=2 xtxt

Toy example Weak learners from the family of lines h => p(error) = 0.5 it is at chance Each data point has a class label: w t =1 and a weight: +1 ( ) -1 ( ) y t =

Toy example This one seems to be the best Each data point has a class label: w t =1 and a weight: +1 ( ) -1 ( ) y t = This is a ‘weak classifier’: It performs slightly better than chance.

Toy example We set a new problem for which the previous weak classifier performs at chance again Each data point has a class label: w t w t exp{-y t H t } We update the weights: +1 ( ) -1 ( ) y t =

Toy example We set a new problem for which the previous weak classifier performs at chance again Each data point has a class label: w t w t exp{-y t H t } We update the weights: +1 ( ) -1 ( ) y t =

Toy example We set a new problem for which the previous weak classifier performs at chance again Each data point has a class label: w t w t exp{-y t H t } We update the weights: +1 ( ) -1 ( ) y t =

Toy example We set a new problem for which the previous weak classifier performs at chance again Each data point has a class label: w t w t exp{-y t H t } We update the weights: +1 ( ) -1 ( ) y t =

Toy example The strong (non- linear) classifier is built as the combination of all the weak (linear) classifiers. f1f1 f2f2 f3f3 f4f4

Given: m examples (x 1, y 1 ), …, (x m, y m ) where x i  X, y i  Y={-1, +1} Initialize D 1 (i) = 1/m The goodness of h t is calculated over D t and the bad guesses. For t = 1 to T 1. Train learner h t with min error 2. Compute the hypothesis weight 3. For each example i = 1 to m Output The weight Adapts. The bigger  t becomes the smaller  t becomes. Z t is a normalization factor. AdaBoost Algorithm Boost example if incorrectly predicted. Linear combination of models.

Boosting with Rectangle Features For each round of boosting: –Evaluate each rectangle filter on each example (compute g(x)) –Sort examples by filter values –Select best threshold (θ) for each filter (one with lowest error) –Select best filter/threshold combination from all candidate features (= Feature f(x)) –Compute weight (α) and incorporate feature into strong classifier F(x) F(x) + α f(x) –Reweight examples

Boosting Boosting fits the additive model by minimizing the exponential loss Training samples The exponential loss is a differentiable upper bound to the misclassification error.

Exponential loss Squared error Exponential loss yF(x) = margin Misclassification error Loss Squared error Exponential loss

Boosting Sequential procedure. At each step we add For more details: Friedman, Hastie, Tibshirani. “Additive Logistic Regression: a Statistical View of Boosting” (1998) to minimize the residual loss input Desired output Parameters weak classifier

Example Classifier for Face Detection ROC curve for 200 feature classifier A classifier with 200 rectangle features was learned using AdaBoost 95% correct detection on test set with 1 in false positives. Not quite competitive...

Building Fast Classifiers Given a nested set of classifier hypothesis classes Computational Risk Minimization vs falsenegdetermined by % False Pos % Detection FACE IMAGE SUB-WINDOW Classifier 1 F T NON-FACE Classifier 3 T F NON-FACE F T Classifier 2 T F NON-FACE

Cascaded Classifier 1 Feature 5 Features F 50% 20 Features 20%2% FACE NON-FACE F F IMAGE SUB-WINDOW A 1 feature classifier achieves 100% detection rate and about 50% false positive rate. A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative) –using data from previous stage. A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Output of Face Detector on Test Images

Solving other “Face” Tasks Facial Feature Localization Demographic Analysis Profile Detection