PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice.

Slides:



Advertisements
Similar presentations
-Different FORMS of an Element that occur Naturally -Have the SAME # of P and E but DIFFERENT # of N -Isotopes of an element have the SAME CHEMICAL PROPERTIES.
Advertisements

Chapter 39 The Atomic Nucleus and Radioactivity
Fundamental Forces of the Universe
Nuclear Binding, Radioactivity Sections 32-1 – 32-9 Physics 1161: Lecture 33.
Chapter 25.  Marie Curie was a Polish scientist whose research led to many discoveries about radiation and radioactive elements. In 1934 she died from.
Reminder: The difference between the mass number and the atomic number gives you the number of neutrons.
Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number.
Nuclear Power.
L 37 Modern Physics [3] [L37] Nuclear physics –what’s inside the nucleus and what holds it together –what is radioactivity –carbon dating [L38] Nuclear.
29:006 FINAL EXAM FRIDAY MAY 11 3:00 – 5:00 PM IN LR1 VAN.
Radioactive Decay.
Chapter 9 pages And Chapter 18 pages
Radiation Objectives Understand the concepts of ½ life and ½ thickness in radiation Differentiate between fusion and fission Describe the processes involved.
The Atomic Nucleus. Review…the nucleus The nucleus is composed of particles called nucleons..__ & __ Neutrons and protons have the same mass, with ___.
Radioactivity Chapter 21  Natural occurring phenomena.  In the nucleus of an atom there are protons and neutrons. Protons are positively charged so they.
Integrated Science Chapter 25 Notes
Chapter 24 Applications of Nuclear Chemistry Read introduction page 776 Quick review of chapter 3 notes.
Radioactivity php.
Nuclear Chemistry Chapter 10.
Chapter 21 Nuclear Chemistry
Nuclear Chemistry. Describing the Nucleus Recall that atoms are composed of protons, neutrons, and electrons. The nucleus of an atom contains the protons,
 Marie Curie ( ) and Pierre Curie ( ) were able to show that rays emitted by uranium atoms caused fogging in photographic plates. ◦ Marie.
Chapter 39 The Atomic Nucleus and Radioactivity
L 37 Modern Physics [3] Nuclear physics Nuclear energy
Chapter 9: Radioactivity and Nuclear Reactions The last chapter we will study!
 Remember that the nucleus is comprised of the two nucleons, protons and neutrons.  The number of protons is the atomic number.  The number of protons.
Nuclear Chemistry Nuclear chemistry is the study of the structure of atomic nuclei and the changes they undergo.
Nuclear Chemistry.
Atomic Stability. Isotopes Isotopes are atoms of an element that have different numbers of neutrons in their nucleus. Cu Copper – 63 OR Copper.
Chapter 10: Nuclear Chemistry
Radioactive Decay. What do you know about Radioactivity? 1.All atoms are made up of __________. 2.What are some radioactive isotopes? 3.Why do some isotopes/atoms.
Chapter 21 Nuclear Chemistry. The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the.
Nuclear Power. Locations of Nuclear Power plants in the US.
Radioactivity SPS3. Students will distinguish the characteristics and components of radioactivity. Differentiate among alpha and beta particles and gamma.
Radioactive Decay Read pages THE STRONG NUCLEAR FORCE STRONG NUCLEAR FORCE Atoms are held together by.
Radiation. Atomic Anatomy Atoms –electrons (e-) –protons (p+) –neutrons (n)
Radioactive Decay Alpha, Beta, and Gamma Decay. Radioactivity Emission of particles and energy from the nucleus of certain atoms This happens through.
Nuclear Radiation > Nuclear Radiation & Transformations.
Radioactivity.
Section 1Nuclear Changes Section 1: What is Radioactivity?
25.2 – Nuclear Decay. Objectives Compare and contrast alpha, beta and gamma radiation. Define the half-life of a radioactive material. Describe the process.
Notebook set-up Composition Book. Table of contentsPage 1 Nuclear Processes.
Chapter 21 Nuclear Chemistry John A. Schreifels Chemistry 212.
Chapter TED:Radioactivity-Expect the Unexpected by Steve Weatherall hDvDlD3b85zmvERO_rSSUj3FVWScEA _X.
Ch. 25 Nuclear Changes Begins on p. 35 of your PACKET.
Chapter 10: Nuclear Chemistry
The Structure of the Atom Radioactivity. –Spontaneous emission of radiation by certain atoms –The structure of atomic nuclei and the changes they undergo.
Nuclear Chemistry. Chemical ReactionsNuclear Reactions - Occur when bonds are broken or formed -Occur when the nucleus emits particles or rays -Atoms.
Nuclear Radiation Half-Life. What is Radiation? Penetrating rays and particles emitted by a radioactive source Result of a nuclear reaction! –Involves.
Nuclear Physics Nuclei atomic number Z = protons
L-35 Modern Physics-3 Nuclear Physics
Chapter 10 Nuclear Chemistry.
1 Clip. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.
L 37 Modern Physics [3] Nuclear physics Nuclear energy
Radioactivity and Nuclear Decay Test on Friday March 1.
1 Chemistry Chapter 3 Atomic Structure and the Nucleus World of Chemistry Zumdahl Last revision Fall 2008.
1. What is radioactivity? Radioactivity is the process in which an unstable atomic nucleus emits charged particles and energy. 2. What is a radioisotope?
NUCLEAR CHANGES. Nuclear Radiation Radioactivity: process by which an unstable nucleus emits one or more particles or energy in the form of electromagnetic.
Nuclear Chemistry I. Radioactivity A.Definitions B.Types of Nuclear Radiation C.Half-Life.
Radioactivity Elements that emit particles and energy from their nucleus are radioactive. Some large atoms are unstable and cannot keep their nucleus together.
25.2 Nuclear Transformations > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 25 Nuclear Chemistry.
L 37 Modern Physics [3] Nuclear physics –what’s inside the nucleus and what holds it together –what is radioactivity –carbon dating Nuclear energy –nuclear.
L-35 Atomic and Nuclear Physics-3
JOURNAL # 1 Share your thoughts on radioactivity.
L 37 Modern Physics [3] Nuclear physics Nuclear energy
L 37 Modern Physics [3] Nuclear physics Nuclear energy
L 36 Modern Physics [3] [L36] Nuclear physics [L37] Nuclear energy
L 37 Modern Physics [3] Nuclear physics Nuclear energy
Nuclear Chemistry.
Presentation transcript:

PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice final exam questions are posted on the Exam Information Link below. We will review the practice final exam questions on Wed. Dec. 10, and Friday Dec. 12.

L-35 Modern Physics-3 Nuclear Physics L-35 Nuclear structure –what’s inside the nucleus –what holds it together –isotopes –radioactivity –half-life L-36 Nuclear energy –nuclear fission –nuclear fusion –nuclear reactors –nuclear weapons 2

3

Structure of the nucleus The diameter of the nucleus is about 10  5 times smaller than the diameter of the atom. proton (+) neutron (0) 10  10 m 10  15 m nucleus Electron(-) 4

The atom and the nucleus the electron and proton have the same charge value, but the electron is  and the proton is + –Q e =  Q p (charge value is 1.6 × 10  19 C) –the neutron has no charge, Q n = 0 the attractive force between the + protons and the  electrons holds the atom together the neutron and proton have about the same mass, and are about 2000 times more massive than the electron –m p  m n, m p  2000  m e = 1.67 × 10  27 kg –the nuclear mass is about 99.9% of the atoms mass What role do the neutrons play? 5

Nuclear Terminology Atomic number Z = the number of protons in the nucleus, which is equal to the number of electrons in the atom, since atoms are electrically neutral. The atomic number is what distinguishes one chemical element from another Neutron number N = the number of neutrons in the nucleus, atoms with the same Z but different N’s are called isotopes Atomic mass number A = Z + N = the number of protons + neutrons, A determines the mass of the nucleus 6

Number of protons and neutrons Number of protons Symbol for the nucleus of element X 7 N = A – Z

Nuclei having the same number of protons, but different numbers of neutrons are called isotopes Hydrogen 1 proton, 0 neutrons Deuterium 1 proton, 1 neutron Tritium 1 proton, 2 neutrons Helium-3 2 protons, 1 neutrons He-4 (a particle) 2 protons, 2 neutrons Carbon 6 protons, 6, 7, 8 neutrons Uranium protons, 235 – 92 = 143 neutrons 8

What holds the nucleus together? The nuclear glue! The nucleus contains positively charged protons, all stuck in a very small volume, repelling each other so what keeps the nucleus together? the nuclear force (glue) this is where the neutrons play a role 9

the nuclear (strong) force protons and neutrons exert an attractive nuclear force on each other when they are very close to each other. However the nuclear force of the protons alone isn’t enough to hold the nucleus together, but the neutrons add more “nuclear glue” without adding the repulsive electric force. stable light (Z < 50) nuclei have as many neutrons as protons stable heavy nuclei (Z > 50) have more neutrons than protons, often many more Since the proton and neutron have roughly the same mass, the Nuclear mass is about the mass of the protons plus the mass of the neutrons. Nuclei with the same number of protons and neutrons lie on the straight line. As Z Increases, N increases more rapidly. 10 Z,

What is radioactivity? in some nuclei, there is a very delicate balance between electric repulsion and nuclear attraction forces. some nuclei are just on the verge of falling apart and need to release some excess energy  an unstable nucleus an unstable nucleus can disintegrate spontaneously by emitting certain kinds of particles or very high energy photons called gamma rays (  ’s)  radioactivity 11

Natural radioactivity some nuclei are naturally radioactive and give off either alpha rays (He nucleus), bets rays (electrons) or gamma rays (high energy photons) randomly the particles are classified in terms their ability to penetrate matter, gammas are the most penetrating and alphas the least penetrating. Gammas can go right through several inches of lead! how do we detect these particles – using a Geiger counter 12

Geiger Counters a gas filled metal cylinder with a positively charged wire down the center the  or  ray ionizes the gas, and the resulting electrons are collected by the positive wire the result is a pulse (blip) of current which is converted to a sound pulse 13

+ High Voltage Electronic counter Geiger tube 14 Demos

Alpha, beta and gammas in a magnetic field 15 Alpha and beta particles are charged, so they are deflected by a magnetic field. Gammas are photons which are not deflected.   

Half-Life of radioactive nuclei the decay of radioactive nuclei is a random process. If you have a sample of many unstable nuclei, you cannot predict when any one nuclei will disintegrate if you start with N o radioactive nuclei now, the HALF LIFE T 1/2 is defined as the time for half of the nuclei present to disintegrate. 16

Half Life, T 1/2 Start, N 0 After one Half-life, ½ N 0 After two Half-lives, ½ (½ N 0 ) After three Half-lives, ½ ( ½ (½ N 0 )) 17

18

T 1/2  2.5 min 19

20

Nuclear reactions decays to by emitting an alpha particle with a half life of 3.8 days If we started with 20,000 atoms of Rn-222, then in 3.8 days we would have 10,000 atoms of Rn- 222 and 10,000 atoms of Po-218 In 7.6 days we would have 5000 atoms of Rn- 222, in 11.4 days, 2500 Rn-222’s, etc Cobalt-60, T 1/ years; decays by emitting betas and gammas 21

Smoke detectors use radioactivity Smoke detectors have a radioactive alpha emitting source. The alpha particles ionize the air in the detector creating a current. If smoke particles enter the detector they can interfere with the current causing it to drop, which sets off the alarm. Americium

Carbon Dating As soon as a living organism dies, it stops taking in new carbon. The ratio of carbon-12 to carbon- 14 at the moment of death is the same as every other living thing, but the carbon-14 decays and is not replaced The carbon-14 decays with its half-life of 5,700 years, while the amount of carbon-12 remains constant in the sample By measuring the ratio of carbon-12 to carbon-14 in the sample and comparing it to the ratio in a living organism, it is possible to determine the age of a formerly living thing fairly precisely. 23

Natural Radioactivity Radon gas occurs in soil and can leak into basements. It can attach to dust particles and be inhaled. cosmic rays – energetic particles from the cosmos enter the atmosphere and decay 24

Nuclear activation Some nuclei that are stable can be activated (made unstable) by bombarding them with neutrons. stable nucleus neutron 25

Cyclotron facility at UIHC Nuclear medicine A cyclotron is a device which accelerates charged particles producing beams of energetic protons These protons are used to bombard materials to produce radioisotopes: unstable nuclei with a short half-life The radioisotopes are implanted in patients for either diagnostic purposes or for cancer treatment 26