Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth Edition,Peterson.

Slides:



Advertisements
Similar presentations
Slide Set 14: TCP Congestion Control. In this set... We begin Chapter 6 but with 6.3. We will cover Sections 6.3 and 6.4. Mainly deals with congestion.
Advertisements

CSCI-1680 Transport Layer II Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Rodrigo Fonseca.
Simulation-based Comparison of Tahoe, Reno, and SACK TCP Kevin Fall & Sally Floyd Presented: Heather Heiman September 10, 2002.
Different TCP Flavors CSCI 780, Fall TCP Congestion Control Slow-start Congestion Avoidance Congestion Recovery Tahoe, Reno, New-Reno SACK.
TCP Congestion Control
EE 4272Spring, 2003 Chapter 17 Transport Protocols Connection-Oriented Transport Protocol  Under Reliable Network Service  Design Issues  Under Unreliable.
ECE 4450:427/527 - Computer Networks Spring 2015
Fundamentals of Computer Networks ECE 478/578 Lecture #21: TCP Window Mechanism Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Introduction to Congestion Control
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
1 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Third Ed.,Peterson.
1 Spring Semester 2007, Dept. of Computer Science, Technion Internet Networking recitation #7 TCP New Reno Vs. Reno.
1 Lecture 9: TCP and Congestion Control Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3.
Spring 2002CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Spring 2003CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Computer Networks : TCP Congestion Control1 TCP Congestion Control.
1 Internet Networking Spring 2004 Tutorial 10 TCP NewReno.
Networks : TCP Congestion Control1 TCP Congestion Control.
Networks : TCP Congestion Control1 TCP Congestion Control Presented by Bob Kinicki.
Advanced Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth.
TCP Congestion Control
EE 4272Spring, 2003 Chapter 17 Transport Protocols Connection-Oriented Transport Protocol  Reliable Network Service: Design Issues  Unreliable Network.
TCP: flow and congestion control. Flow Control Flow Control is a technique for speed-matching of transmitter and receiver. Flow control ensures that a.
CSE 461 University of Washington1 Topic How TCP implements AIMD, part 1 – “Slow start” is a component of the AI portion of AIMD Slow-start.
1 TCP - Part II Relates to Lab 5. This is an extended module that covers TCP data transport, and flow control, congestion control, and error control in.
Lecture 9 – More TCP & Congestion Control
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
CS640: Introduction to Computer Networks Aditya Akella Lecture 15 TCP – III Reliability and Implementation Issues.
Computer Networking Lecture 18 – More TCP & Congestion Control.
1 CS 4396 Computer Networks Lab TCP – Part II. 2 Flow Control Congestion Control Retransmission Timeout TCP:
CS640: Introduction to Computer Networks Aditya Akella Lecture 15 TCP – III Reliability and Implementation Issues.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Advanced Computer Networking Internet Congestion Control
TCP Congestion Control Computer Networks TCP Congestion Control 1.
Spring 2009CSE Congestion Control Outline Resource Allocation Queuing TCP Congestion Control.
1 Computer Networks Congestion Avoidance. 2 Recall TCP Sliding Window Operation.
TCP Congestion Control
TCP. TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already.
CS 6401 Congestion Control in TCP Outline Overview of RENO TCP Reacting to Congestion SS/AIMD example.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Spring Computer Networks1 Congestion Control II Outline Queuing Discipline Reacting to Congestion Avoiding Congestion DECbit Random Early Detection.
Transmission Control Protocol (TCP) TCP Flow Control and Congestion Control CS 60008: Internet Architecture and Protocols Department of CSE, IIT Kharagpur.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
TCP - Part II Relates to Lab 5. This is an extended module that covers TCP flow control, congestion control, and error control in TCP.
9.6 TCP Congestion Control
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
Chapter 6 TCP Congestion Control
Congestion Control.
Introduction to Congestion Control
Congestion Control Outline Queuing Discipline Reacting to Congestion
TCP - Part II Relates to Lab 5. This is an extended module that covers TCP flow control, congestion control, and error control in TCP.
TCP.
ECE 4450:427/527 - Computer Networks Spring 2017
So far, On the networking side, we looked at mechanisms to links hosts using direct linked networks and then forming a network of these networks. We introduced.
The University of Adelaide, School of Computer Science
Congestion Control in TCP
Other Methods of Dealing with Congestion
Advanced Computer Networks
Chapter 6 TCP Congestion Control
If both sources send full windows, we may get congestion collapse
TCP Congestion Control
CS4470 Computer Networking Protocols
EE 122: Lecture 10 (Congestion Control)
Congestion Control in TCP
Transport Layer: Congestion Control
TCP flow and congestion control
Presentation transcript:

Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth Edition,Peterson and Davie, Morgan Kaufmann, 2007.

Computer Networks: TCP Congestion Control 2 TCP Congestion Control Essential strategy :: The TCP host sends packets into the network without a reservation and then the host reacts to observable events. Originally TCP assumed FIFO queuing. Basic idea :: each source determines how much capacity is available to a given flow in the network. ACKs are used to ‘pace’ the transmission of packets such that TCP is “self-clocking”.

Computer Networks: TCP Congestion Control 3 AIMD (Additive Increase / Multiplicative Decrease) CongestionWindow (cwnd) is a variable held by the TCP source for each connection. cwnd is set based on the perceived level of congestion. The Host receives implicit (packet drop) or explicit (packet mark) indications of internal congestion. MaxWindow :: min (CongestionWindow, AdvertisedWindow) EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked )

Computer Networks: TCP Congestion Control 4 Additive Increase (AI) Additive Increase is a reaction to perceived available capacity (referred to as congestion avoidance stage). Frequently in the literature, additive increase is defined by parameter α (where the default is α = 1). Linear Increase :: For each “cwnd’s worth” of packets sent, increase cwnd by 1 packet. In practice, cwnd is incremented fractionally for each arriving ACK. increment = MSS x (MSS /cwnd) cwnd = cwnd + increment

Computer Networks: TCP Congestion Control 5 Figure 6.8 Additive Increase SourceDestination Add one packet each RTT

Computer Networks: TCP Congestion Control 6 Multiplicative Decrease (MD) *Key assumption :: a dropped packet and resultant timeout are due to congestion at a router. Frequently in the literature, multiplicative decrease is defined by parameter β (where the default is β = 0.5) Multiplicate Decrease:: TCP reacts to a timeout by halving cwnd. Although defined in bytes, the literature often discusses cwnd in terms of packets (or more formally in MSS == Maximum Segment Size). cwnd is not allowed below the size of a single packet.

Computer Networks: TCP Congestion Control 7 AIMD (Additive Increase / Multiplicative Decrease) It has been shown that AIMD is a necessary condition for TCP congestion control to be stable. Because the simple CC mechanism involves timeouts that cause retransmissions, it is important that hosts have an accurate timeout mechanism. Timeouts set as a function of average RTT and standard deviation of RTT. However, TCP hosts only sample round-trip time once per RTT using coarse-grained clock.

Computer Networks: TCP Congestion Control 8 Figure 6.9 Typical TCP Sawtooth Pattern

Computer Networks: TCP Congestion Control 9 Slow Start Linear additive increase takes too long to ramp up a new TCP connection from cold start. Beginning with TCP Tahoe, the slow start mechanism was added to provide an initial exponential increase in the size of cwnd. Remember mechanism by: slow start prevents a slow start. Moreover, slow start is slower than sending a full advertised window’s worth of packets all at once.

Computer Networks: TCP Congestion Control 10 Slow Start The source starts with cwnd = 1. Every time an ACK arrives, cwnd is incremented.  cwnd is effectively doubled per RTT “epoch”. Two slow start situations:  At the very beginning of a connection {cold start}.  When the connection goes dead waiting for a timeout to occur (i.e, the advertized window goes to zero!)

Computer Networks: TCP Congestion Control 11 Figure 6.10 Slow Start SourceDestination Slow Start Add one packet per ACK

Computer Networks: TCP Congestion Control 12 Slow Start However, in the second case the source has more information. The current value of cwnd can be saved as a congestion threshold. This is also known as the “slow start threshold” ssthresh.

ssthresh Computer Networks: TCP Congestion Control 13

Computer Networks: TCP Congestion Control 14 Figure 6.11 Behavior of TCP Congestion Control

Computer Networks: TCP Congestion Control 15 Fast Retransmit Coarse timeouts remained a problem, and Fast retransmit was added with TCP Tahoe. Since the receiver responds every time a packet arrives, this implies the sender will see duplicate ACKs. Basic Idea:: use duplicate ACKs to signal lost packet. Fast Retransmit Upon receipt of three duplicate ACKs, the TCP Sender retransmits the lost packet.

Computer Networks: TCP Congestion Control 16 Fast Retransmit Generally, fast retransmit eliminates about half the coarse-grain timeouts. This yields roughly a 20% improvement in throughput. Note – fast retransmit does not eliminate all the timeouts due to small window sizes at the source.

Computer Networks: TCP Congestion Control 17 Figure 6.12 Fast Retransmit Fast Retransmit Based on three duplicate ACKs

Computer Networks: TCP Congestion Control 18 Figure 6.13 TCP Fast Retransmit Trace

Computer Networks: TCP Congestion Control 19 Fast Recovery Fast recovery was added with TCP Reno. Basic idea:: When fast retransmit detects three duplicate ACKs, start the recovery process from congestion avoidance region and use ACKs in the pipe to pace the sending of packets. Fast Recovery After Fast Retransmit, half cwnd and commence recovery from this point using linear additive increase ‘primed’ by left over ACKs in pipe.

Computer Networks: TCP Congestion Control 20 Modified Slow Start With fast recovery, slow start only occurs: –At cold start –After a coarse-grain timeout This is the difference between TCP Tahoe and TCP Reno!!

Many TCP ‘flavors’ TCP New Reno TCP SACK – requires sender and receiver both to support TCP SACK – possible state machine is complex. TCP Vegas – adjusts window size based on difference between expected and actual RTT. TCP Cubic Computer Networks: TCP Congestion Control 21

Figure 5.6 Three-way TCP Handshake Computer Networks: TCP Congestion Control 22

Computer Networks: TCP Congestion Control 23 Adaptive Retransmissions RTT:: Round Trip Time between a pair of hosts on the Internet. How to set the TimeOut value (RTO)? –The timeout value is set as a function of the expected RTT. –Consequences of a bad choice?

Computer Networks: TCP Congestion Control 24 Original Algorithm Keep a running average of RTT and compute TimeOut as a function of this RTT. –Send packet and keep timestamp t s. –When ACK arrives, record timestamp t a. SampleRTT = t a - t s

Computer Networks: TCP Congestion Control 25 Original Algorithm Compute a weighted average: EstimatedRTT = α x EstimatedRTT + (1- α ) x SampleRTT α in range (0.8,0.9) Original TCP spec: α in range (0.8,0.9) TimeOut = 2 x EstimatedRTT

Computer Networks: TCP Congestion Control 26 Karn/Partidge Algorithm An obvious flaw in the original algorithm: Whenever there is a retransmission it is impossible to know whether to associate the ACK with the original packet or the retransmitted packet.

Computer Networks: TCP Congestion Control 27 Figure 5.10 Associating the ACK?

Computer Networks: TCP Congestion Control 28 Karn/Partidge Algorithm SampleRTT 1.Do not measure SampleRTT when sending packet more than once. TimeOut TimeOut 2.For each retransmission, set TimeOut to double the last TimeOut. { Note – this is a form of exponential backoff based on the believe that the lost packet is due to congestion.}

Computer Networks: TCP Congestion Control 29 Jacobson/Karels Algorithm The problem with the original algorithm is that it did not take into account the variance of SampleRTT. Difference = SampleRTT – EstimatedRTT EstimatedRTT = EstimatedRTT + (δ x Difference) Deviation = δ (|Difference| - Deviation) δ where δ is a fraction between 0 and 1.

Computer Networks: TCP Congestion Control 30 Jacobson/Karels Algorithm TCP computes timeout using both the mean and variance of RTT TimeOut = µ x EstimatedRTT + Φ x Deviation µ = 1Φ = 4 where based on experience µ = 1 and Φ = 4.

TCP Congestion Control Summary TCP interacts with routers in the subnet and reacts to implicit congestion notification (packet drop) by reducing the TCP sender’s congestion window. TCP increases congestion window using slow start or congestion avoidance. Currently, the two most common versions of TCP are New Reno and Cubic Computer Networks: TCP Congestion Control 31

TCP New Reno Two problem scenarios with TCP Reno – bursty losses, Reno cannot recover from bursts of 3+ losses –Packets arriving out-of-order can yield duplicate acks when in fact there is no loss. New Reno solution – try to determine the end of a burst loss. Computer Networks: TCP Congestion Control 32

TCP New Reno When duplicate ACKs trigger a retransmission for a lost packet, remember the highest packet sent from window in recover. Upon receiving an ACK, –if ACK partial ACK –If ACK ≥ recover => new ACK Computer Networks: TCP Congestion Control 33

TCP New Reno Partial ACK implies another lost packet: retransmit next packet, inflate window and stay in fast recovery. New ACK implies fast recovery is over: starting from 0.5 x cwnd proceed with congestion avoidance (linear increase). New Reno recovers from n losses in n round trips. Computer Networks: TCP Congestion Control 34