1.5 Elementary Matrices and a Method for Finding

Slides:



Advertisements
Similar presentations
Rules of Matrix Arithmetic
Advertisements

CHAPTER 1 Section 1.6 إعداد د. هيله العودان (وضعت باذن معدة العرض)
1.5 Elementary Matrices and a Method for Finding
Section 1.7 Diagonal, Triangular, and Symmetric Matrices.
Systems of Linear Equations and Matrices
1.7 Diagonal, Triangular, and Symmetric Matrices.
Matrices & Systems of Linear Equations
Matrices and Systems of Equations
MOHAMMAD IMRAN DEPARTMENT OF APPLIED SCIENCES JAHANGIRABAD EDUCATIONAL GROUP OF INSTITUTES.
化工應用數學 授課教師: 郭修伯 Lecture 9 Matrices
INDR 262 INTRODUCTION TO OPTIMIZATION METHODS LINEAR ALGEBRA INDR 262 Metin Türkay 1.
Chapter 3 The Inverse. 3.1 Introduction Definition 1: The inverse of an n  n matrix A is an n  n matrix B having the property that AB = BA = I B is.
Chapter 5 Determinants.
Copyright © Cengage Learning. All rights reserved. 7.6 The Inverse of a Square Matrix.
1.5 Elementary Matrices and
1 Operations with Matrice 2 Properties of Matrix Operations
1.7 Diagonal, Triangular, and Symmetric Matrices 1.
5  Systems of Linear Equations: ✦ An Introduction ✦ Unique Solutions ✦ Underdetermined and Overdetermined Systems  Matrices  Multiplication of Matrices.
Linear Algebra - Chapter 1 [YR2005]
SYSTEMS OF LINEAR EQUATIONS
1 1.1 © 2012 Pearson Education, Inc. Linear Equations in Linear Algebra SYSTEMS OF LINEAR EQUATIONS.
2.1 Operations with Matrices 2.2 Properties of Matrix Operations
1 資訊科學數學 14 : Determinants & Inverses 陳光琦助理教授 (Kuang-Chi Chen)
1 資訊科學數學 13 : Solutions of Linear Systems 陳光琦助理教授 (Kuang-Chi Chen)
Elementary Linear Algebra Anton & Rorres, 9th Edition
 Row and Reduced Row Echelon  Elementary Matrices.
Matrices King Saud University. If m and n are positive integers, then an m  n matrix is a rectangular array in which each entry a ij of the matrix is.
Copyright © 2011 Pearson, Inc. 7.3 Multivariate Linear Systems and Row Operations.
Sec 3.1 Introduction to Linear System Sec 3.2 Matrices and Gaussian Elemination The graph is a line in xy-plane The graph is a line in xyz-plane.
Chapter 2A Matrices 2A.1 Definition, and Operations of Matrices: 1 Sums and Scalar Products; 2 Matrix Multiplication 2A.2 Properties of Matrix Operations;
Systems of Linear Equation and Matrices
Matrix Algebra. Quick Review Quick Review Solutions.
Chap. 2 Matrices 2.1 Operations with Matrices
Numerical Computation Lecture 7: Finding Inverses: Gauss-Jordan United International College.
Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix.
Using Matrices A matrix is a rectangular array that can help us to streamline the solving of a system of equations The order of this matrix is 2 × 3 If.
Matrix. REVIEW LAST LECTURE Keyword Parametric form Augmented Matrix Elementary Operation Gaussian Elimination Row Echelon form Reduced Row Echelon form.
Sec 3.5 Inverses of Matrices Where A is nxn Finding the inverse of A: Seq or row operations.
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
Chapter 9 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Multiplicative Inverses of Matrices and Matrix Equations.
8.1 Matrices & Systems of Equations
1 C ollege A lgebra Systems and Matrices (Chapter5) 1.
Section 1.5 Elementary Matrices and a Method for Finding A −1.
Matrices CHAPTER 8.1 ~ 8.8. Ch _2 Contents  8.1 Matrix Algebra 8.1 Matrix Algebra  8.2 Systems of Linear Algebra Equations 8.2 Systems of Linear.
1.5 Elementary Matrices and
Lecture 8 Matrix Inverse and LU Decomposition
Elementary Linear Algebra Anton & Rorres, 9 th Edition Lecture Set – 02 Chapter 2: Determinants.
Chapter 3 Determinants Linear Algebra. Ch03_2 3.1 Introduction to Determinants Definition The determinant of a 2  2 matrix A is denoted |A| and is given.
Elementary Linear Algebra Anton & Rorres, 9 th Edition Lecture Set – 07 Chapter 7: Eigenvalues, Eigenvectors.
For real numbers a and b,we always have ab = ba, which is called the commutative law for multiplication. For matrices, however, AB and BA need not be equal.
Chapter 8 Matrices and Determinants Matrix Solutions to Linear Systems.
Chapter 2 Determinants. With each square matrix it is possible to associate a real number called the determinant of the matrix. The value of this number.
Matrices and Determinants
1.6 Further Results on Systems of Equations and Invertibility.
Linear Algebra Chapter 2 Matrices.
2.5 – Determinants and Multiplicative Inverses of Matrices.
Section 2.1 Determinants by Cofactor Expansion. THE DETERMINANT Recall from algebra, that the function f (x) = x 2 is a function from the real numbers.
2 - 1 Chapter 2A Matrices 2A.1 Definition, and Operations of Matrices: 1 Sums and Scalar Products; 2 Matrix Multiplication 2A.2 Properties of Matrix Operations;
Matrices, Vectors, Determinants.
MATRICES A rectangular arrangement of elements is called matrix. Types of matrices: Null matrix: A matrix whose all elements are zero is called a null.
Copyright © Cengage Learning. All rights reserved. 8 Matrices and Determinants.
MAT 322: LINEAR ALGEBRA.
Lecture 2 Matrices Lat Time - Course Overview
1.6 Further Results on Systems
Chapter 2 Determinants by Cofactor Expansion
Elementary Matrix Methid For find Inverse
Determinant of a Matrix
Systems of Linear Equations and Matrices
Sec 3.5 Inverses of Matrices
Presentation transcript:

1.5 Elementary Matrices and a Method for Finding An elementary row operation on a matrix A is any one of the following three types of operations: Interchange of two rows of A. Replacement of a row r of A by c r for some number c ≠ 0. Replacement of a row r1 of A by the sum r1 + c r2 of that row and a multiple of another row r2 of A. An n×n elementary matrix is a matrix produced by applying exactly one elementary row operation to In Examples:

When a matrix A is multiplied on the left by an elementary matrix E, the effect is To perform an elementary row operation on A. Theorem (Row Operations by Matrix Multiplication) Suppose that E is an m×m elementary matrix produced by applying a particular elementary row operation to Im, and that A is an m×n matrix. Then EA is the matrix that results from applying that same elementary row operation to A Theorem Every elementary matrix is invertible, and the inverse is also an elementary matrix. Remark: The above theorem is primarily of theoretical interest. Computationally, it is preferable to perform row operations directly rather than multiplying on the left by an elementary matrix.

Theorem Theorem (Equivalent Statements) If A is an n×n matrix, then the following statements are equivalent, that is, all true or all false. A is invertible. Ax = 0 has only the trivial solution. The reduced row-echelon form of A is In. A is expressible as a product of elementary matrices.

A Method for Inverting Matrices By previous Theorem, if A is invertible, then the reduced row-echelon form of A is In. That is, we can find elementary matrices E1, E2, …, Ek such that Ek …E2E1A = In. Multiplying it on the right by A-1 yields Ek …E2E1In = A-1 That is, A-1 = Ek …E2E1In To find the inverse of an invertible matrix A, we must find a sequence of elementary row operations that reduces A to the identity and then perform this same sequence of operations on In to obtain

Using Row Operations to Find A-1 Example: Find the inverse of Solution: To accomplish this we shall adjoin the identity matrix to the right side of A, thereby producing a matrix of the form [A | I ] We shall apply row operations to this matrix until the left side is reduced to I; these operations will convert the right side to , so that the final matrix will have the form [I | ]

Row operations rref Thus

If and n X n matrix A is not invertible, then it cannot be reduced to In by elementary row operations, i.e, the computation can be stopped. Example:

1.6 Further Results on Systems of Equations and Invertibility Theorem 1.6.1 Every system of linear equations has either no solutions, exactly one solution, or in finitely many solutions. Theorem 1.6.2 If A is an invertible n×n matrix, then for each n×1 matrix b, the system of equations Ax = b has exactly one solution, namely, x = b. Remark: this method is less efficient, computationally, than Gaussian elimination, But it is important in the analysis of equations involving matrices.

Example: Solve the system by using

Linear Systems with a Common Coefficient Matrix To solve a sequence of linear systems, Ax = b1, Ax = b2, …, Ax = bk, with common coefficient matrix A If A is invertible, then the solutions x1 = b1, x2 = b2 , …, xk = bk A more efficient method is to form the matrix [ A | b1 | b2| … | bk ], then reduce it to reduced row-echelon form we can solve all k systems at once by Gauss-Jordan elimination (Here A may not be invertible)

Example: Solve the system Solution:

Theorem 1.6.3 Let A be a square matrix (a) If B is a square matrix satisfying BA = I, then B = (b) If B is a square matrix satisfying AB = I, then B = Theorem 1.6.5 Let A and B be square matrices of the same size. If AB is invertible, then A and B must also be invertible

Theorem 1.6.4 (Equivalent Statements) If A is an n×n matrix, then the following statements are equivalent A is invertible Ax = 0 has only the trivial solution The reduced row-echelon form of A is In A is expressible as a product of elementary matrices Ax = b is consistent for every n×1 matrix b Ax = b has exactly one solution for every n×1 matrix b

A Fundamental Problem: Let A be a fixed mXn matrix A Fundamental Problem: Let A be a fixed mXn matrix. Find all mX1 matrices b such Such that the system of equations Ax=b is consistent. If A is an invertible matrix, then for every mXn matrix b, the linear system Ax=b has The unique solution x= b. If A is not square, or if A is a square but not invertible, then theorem 1.6.2 does not Apply. In these cases the matrix b must satisfy certain conditions in order for Ax=b To be consistent.

Determine Consistency by Elimination Example: What conditions must b1, b2, and b3 satisfy in order for the system of equations To be consistent? Solution:

Example: What conditions must b1, b2, and b3 satisfy in order for the system of equations To be consistent? Solution:

Section 1.7 Diagonal, Triangular, and Symmetric matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal matrix. For example: A general nxn diagonal matrix (1) A diagonal matrix is invertible if and only if all its diagonal entries are nonzero; in this case the inverse of (1) is

Diagonal Matrices Powers of diagonal matrices are easy to compute: if D is the diagonal matrix (1) and k is a positive integer, then In words, to multiply a matrix A on the left by a diagonal matrix D, one can multiply successive rows of A by the successive diagonal entries of D, and to multiply A on the right by D, one can multiply successive columns of A by the successive diagonal entries of D.

Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called low triangular, and a square matrix in which all the entries below the main diagonal are zero is called upper triangular. A matrix that is either upper triangular or lower triangular is called triangular. Theorem 1.7.1 The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. The product of lower triangular matrices is lower triangular, and the product of upper triangular is upper triangular. A triangular matrix is invertible if and only if its diagonal entries are all nonzero. The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.

Symmetric matrices A square matrix A is called symmetric if A=AT. A matrix A=[aij] is symmetric if and only if aij=aji for all values of I and j. Theorem 1.7.2 If A and B are symmetric matrices with the same size, and if k is any scalar, then: AT is symmetric. A+B and A-B are symmetric. kA is symmetric. Note: in general, the product of symmetric matrices is not symmetric. If A and B are matrices such that AB=BA, then we say A and B commute. The product of two symmetric matrices is symmetric if and only if the matrices commute.

Theorems Theorem 1.7.3 If A is an invertible symmetric matrix, then A-1 is symmetric. Theorem 1.7.4 If A is an invertible matrix, then AAT and ATA are also invertible.