Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.

Slides:



Advertisements
Similar presentations
One-dimensional approach to frustrated magnets
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Frustrated Magnetism, Quantum spin liquids and gauge theories
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Exotic Phases in Quantum Magnets MPA Fisher Outline: 2d Spin liquids: 2 Classes Topological Spin liquids Critical Spin liquids Doped Mott insulators: Conducting.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
1 Quantum Choreography: Exotica inside Crystals Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory of Solids: Band Theory.
Quantum criticality of Fermi surfaces in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Minoru Yamashita, Kyoto Univ. Quantum spin liquid in 2D Recipe.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Higgs Bosons in Condensed Matter Muir Morrison Ph 199 5/23/14.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
Some open questions from this conference/workshop
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
and the phases of matter
Quantum phase transitions and the Luttinger theorem.
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

References Exotic phases and quantum phase transitions: model systems and experiments, Rapporteur talk at the 24th Solvay Conference on Physics, "Quantum Theory of Condensed Matter", arXiv: Quantum magnetism and criticality, Nature Physics 4, 173 (2008), arXiv: Quantum phases and phase transitions of Mott insulators, arXiv:cond-mat/

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

TlCuCl 3

An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). TlCuCl 3 at ambient pressure

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). Sharp spin 1 particle excitation above an energy gap (spin gap) TlCuCl 3 at ambient pressure

Ground state has long-range Néel order Square lattice antiferromagnet

J J/ Weaken some bonds to induce spin entanglement in a new quantum phase

Square lattice antiferromagnet J J/ Ground state is a “quantum paramagnet” with spins locked in valence bond singlets

Pressure in TlCuCl 3

Quantum critical point with non-local entanglement in spin wavefunction

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). Sharp spin 1 particle excitation above an energy gap (spin gap) TlCuCl 3 at ambient pressure

Spin waves

Discussion of quantum rotor model

CFT3

Spin waves

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008) TlCuCl 3 with varying pressure

Prediction of quantum field theory Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

CFT3

S. Wenzel and W. Janke, arXiv: M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997) Quantum Monte Carlo - critical exponents

Field-theoretic RG of CFT3 E. Vicari et al. S. Wenzel and W. Janke, arXiv: M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997)

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied

Spin density wave theory

Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets

Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Electron pockets

N. P. Armitage et al., Phys. Rev. Lett. 88, (2002). Photoemission in NCCO

Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Electron pockets Hole pockets

Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets

Spin density wave theory

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline

Half-filled band  Mott insulator with spin S = 1/2 Triangular lattice of [Pd(dmit) 2 ] 2  frustrated quantum spin system X[Pd(dmit) 2 ] 2 Pd SC X Pd(dmit) 2 t’ t t Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007)

Anisotropic triangular lattice antiferromagnet Neel ground state for small J’/J Broken spin rotation symmetry

Anisotropic triangular lattice antiferromagnet

Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO)

Anisotropic triangular lattice antiferromagnet Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet Possible ground state for intermediate J’/J Valence bond solid (VBS) Broken lattice space group symmetry N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

Excitations of the Z 2 Spin liquid = A spinon

Excitations of the Z 2 Spin liquid = A spinon

Excitations of the Z 2 Spin liquid = A spinon

Excitations of the Z 2 Spin liquid = A spinon

Anisotropic triangular lattice antiferromagnet

Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO)

Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) Spin gap Spin gap

Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) VBS order Spin gap Spin gap

M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, (2006) Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, (2007) Observation of a valence bond solid (VBS) in ETMe 3 P[Pd(dmit) 2 ] 2 Spin gap ~ 40 K J ~ 250 K X-ray scattering

Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) VBS order Spin gap Spin gap

Discussion of Schwinger bosons on the square lattice and U(1) gauge theory

Schwinger boson mean field theory on the square lattice and perturbative fluctuations Origin of gauge invariance

Schwinger boson mean field theory on the square lattice and perturbative fluctuations