Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

A Study of the 30 P(p,  ) 31 S Reaction via the 32 S(d,t) 31 S Reaction and its Astrophysical Relevance Dan Irvine McMaster University CAWONAPS 2010Dec.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Nuclear Astrophysics II Lecture 7 Fri. June 15, 2012 Prof. Shawn Bishop, Office 2013, Ex
Nuclear Astrophysics II Lecture 5 Fri. June 1, 2012 Prof. Shawn Bishop, Office 2013, Ex
What have we learned last time? Q value Binding energy Semiempirical binding energy formula Stability.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Introduction to stellar reaction rates Nuclear reactions generate energy create new isotopes and elements Notation for stellar rates: p 12 C 13 N  12.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
12C(p,g)13N g III. Nuclear Reaction Rates 12C 13N Nuclear reactions
1107 Series of related experiments; first for transfer with TIGRESS Nuclear structure motivation for 25,27 Na beams Nuclear astrophysics motivation for.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
EXTRA CREDIT Find as many mistakes as you can and correct them! Cite your source for the lyrics and astronomical data. Show any math/conversions explicitly.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
1 III. Nuclear Reaction Rates Nuclear reactions generate energy create new isotopes and elements Notation for stellar rates: p 12 C 13 N  12 C(p,  )
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
Nuclear astrophysics with the Munich Q3D spectrograph
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
Nuclear Astrophysics Working Group Discussion. Schedule 6:00 – 6:15Philippe Collon (p-process: AMS) 6:15 – 6:30 Alan Chen (Classical novae/X-ray bursts)
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Absolute resonance strength measurements of the 22 Na(p,  ) reaction Chris Wrede Center for Experimental Nuclear Physics and Astrophysics University of.
Recent Results for proton capture S-factors from measurements of Asymptotic Normalization Coefficients R. Tribble Texas A&M University OMEG03 November,
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Image credit: NASA/Dana Berr. X-ray bursts - Close binary system: very dense neutron star and main sequence companion star - Matter accreted onto surface.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Measurement of the 26 Al(d,p) 27 Al reaction to constrain the 26 Al(p,  ) 27 Si reaction rate Steven D. Pain Oak Ridge National Laboratory NS12, Argonne,
Caroline D. Nesaraja, Michael S. Smith NUCLEAR DATA ACTIVITIES AT OAK RIDGE NATIONAL LABORATORY.
CAWONAPS - Dec 10th, S(p,  ) 34 Cl Constraining nova observables: Direct measurement of 33 S(p,  ) 34 Cl in inverse kinematics Jennifer Fallis,
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Direct measurement of the 18 Ne( , p) 21 Na reaction with a GEM – MSTPC Takashi Hashimoto CNS, University of Tokyo Collaborators CNS S. Kubono, H. Yamaguchi,
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Determining the rp-Process Flow through 56 Ni 56 Ni is a Waiting Point and imposes a delay Decay Lifetime: 2.3x10^4 s ; Burst Time: 10 – 100 s Largest.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Studies on alpha-induced astrophysical reactions using the low-energy RI beam separator CRIB Studies on alpha-induced astrophysical reactions using the.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
Development of an active target for astrophysical experiments at CRIB Takashi Hashimoto The University of Tokyo, CNS.
Alex MurphyPROCON Proton unbound states in 21 Mg and their astrophysical significance Alex Murphy Nova Herculis 1934: AAT Nova Persei 1901: Herschel.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
1/14 Recoil Spectrometer mini Workshop December 15, 2012 Gas jet target system for KOBRA Andy Chae
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
the s process: messages from stellar He burning
The neutron capture cross section of the s-process branch point 63Ni
Carbon, From Red Giants to White Dwarfs
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Presentation transcript:

classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University

rare isotopes in stars: type I x-ray bursts model: binary star system accretion on neutron star thermonuclear runaway observations: light curves research areas: Breakout from the Hot-CNO cycles rp-process: path, endpoint, synthesis  p-process  key reactions experiments: proton-rich rare isotopes (p,  ) and ( ,p) reactions mass measurements

rp-process: beginnings explosive hydrogen-helium burning (T  0.5 GK)  breakout from the Hot-CNO cycles 15 O( ,  ) 19 Ne 19 Ne(p,  ) 20 Na 18 Ne( ,p) 21 Na 14 O( ,p) 17 F 17 F(p,  ) 18 Ne [figure adapted from C. Iliadis (2007)]

rp-process, cont’d after breakout from Hot-CNO cycles: ( ,p) and (p,  ) on proton-rich nuclei  production of heavier elements energy generation and timescale set by “waiting-point” nuclei: e.g., 30 S, 56 Ni, 64 Ge, 68 Se reaction flow: competition between  -decay and reactions ( ,p) and (p,  ) reaction rates: often calculated with statistical models (e.g., Hauser-Feshbach) need experimental verification

rp-process, cont’d [type I x-ray burst – neutron star: 1.3M sun, R = 8 km, T peak = 1.4 GK,  = 100 s]  p-process WP: 22 Mg, 26 Si, 30 S, 34 Ar ( ,p) cross sections rp-process WP: 56 Ni, 64 Ge, 68 Se, 72 Kr 57 Cu(p,  ) 58 Zn Q-values for 64 Ge(p,  ) 65 As 68 Se(p,  ) 69 Br [nucleosynthesis study: A. Parikh et al., Ap.J.Supp. Ser. (2008); PRC (2009)]

thermonuclear reaction: narrow resonances Breit-Wigner formula: partial widths of entrance and exit channels total width resonance energy resonance energy: needs to be measured precisely “resonance strength”  [broad resonances: widths are energy-dependent  calculate reaction rate analytically]

15 O( ,  ) 19 Ne Breakout reaction from the Hot CNO cycles Direct measurement not feasible Need B  for MeV state of 19 Ne

15 O( ,  ) 19 Ne B  for MeV state of 19 Ne: new technique ATLAS: 19 F beam gas cell catcher foil + wheel custom NaI detectors Approved for test run

( ,p) reactions Time-inverse measurements, so far 17 F(p,  ) 14 O, 21 Na(p,  ) 18 Ne, 25 Al(p,  ) 22 Mg, 29 P(p,  ) 26 Si, 33 Cl(p,  ) 30 S, 37 K(p,  ) 34 Ar  undetermined contributions from reactions to excited states Direct measurements are needed Approaches: AIRIS + HELIOS (inc. cryogenic gas cell and high-rate ionization chamber)

HELIOS Gas Target Multiple window flanges allow for different target thicknesses (1, 2 and 3 mm) For backward angle measurements: – upstream window: diameter = 0.31”  lab > 94° – downstream window: diameter = 0.25”  lab < 72° Effective target thicknesses of e.g. ~65  g/cm 2 for 700-mbar 3 He (2-mm gas cell) Best resolution: ~ 270-keV FWHM (using 1 mg/cm 2 Kapton window) lines for LN 2 cooling input/output gas lines fan for solid targets, FC, source, etc. entrance/exit window

HELIOS Ionization Chamber Alternating anode and grounded grids: – grid separation: 1.7 cm – wire spacing: 2-mm – x and y position sensitivity Commissioned Feb/March 2013: 28 Si+ 12 C, 28 Si+Au, 86 Kr(d,p), CARIBU beam, 14 C(d,p), 14 C( 3 He,d) Results: – rates of > 400 kHz (pileup ~ 10 – 30 %) – energy resolution better than 5%

18 Ne( ,p) 21 Na Breakout reaction from Hot-CNO cycles Experiments: transfer reactions time-inverse with RIBs

18 Ne( ,p) 21 Na with HELIOS Gamow window: E cm  1 – 2 MeV E( 18 Ne) = 1 – 1.5 MeV/A Gas cell: K: 25  g/cm 2 20% detection efficiency AIRIS: 10 5 pps Ecm  1.97 MeV: cross section  1 mb 40 – 50 counts in a week Matic, Mohr (2013)

( ,p) reactions Approaches: AIRIS + HELIOS (inc. cryogenic gas cell and high-rate ionization chamber) good energy resolution for protons limited solid angle coverage Alternative: use AGFA to detect recoils full angular coverage good separation of beam contaminant contributions no resolution

rare isotopes in stars: classical novae models: binary star system accretion on white dwarf thermonuclear runaway observations: ejecta spectroscopy presolar meteoritic grains research areas: Ne-Na, Mg-Al cycles reactions affecting synthesis of: -  -emitters (e.g., 18 F, 22 Na, 26 Al) - isotopes in meteoritic grains - elements in ejecta experiments: proton-rich rare isotopes (p,  ) and (p,  ) reactions 18 F(p,  ) 15 O, 25 Al(p,  ) 26 Si, 30 P(p,  ) 31 S [Nova Pyxidis]

the nuclear origin of galactic 26 Al important reactions: 26 Al(p,  ) 27 Si 25 Al(p,  ) 26 Si [Iliadis et al. Ap. J. (2002)] RHESSI

nova nucleosynthesis at phosphorus 29 P 30 P 27 Si 28 P 30 S 31 S 28 Si 29 Si 32 S 31 P 30 Si [p,  ] β+β+ [2.5 min] P(p,  ) 31 S [ 30 P(p,  ) 31 S: also important in x-ray bursts  reaction flow] [silicon abundances: competition between phosphorus (p,  ) and  + ]

nova nucleosynthesis at phosphorous (cont’d) variation in 30 P(p,  ) 31 S rate  changes A ≈ abundances by factors of 2 – 10 drives the nuclear activity toward heaviest elements produced (A ≈ 40)  reaction rate has large uncertainties (  x 20)  need more experiments, but direct measurement not feasible [José et al., Ap.J. (2001) and Iliadis et al., Ap.J. (2002)]

nova nucleosynthesis at ATLAS Use ( 3 He,d) as a surrogate for (p,  ): HELIOS Examples: 25 Al(p,  ) 26 Si  AIRIS: 10 7 pps 30 P(p,  ) 31 S  AIRIS: 10 7 pps