G RAPHING R ATIONAL F UNCTIONS GRAPHS OF RATIONAL FUNCTIONS C ONCEPT S UMMARY Let p (x ) and q (x ) be polynomials with no common factors other than 1.The.

Slides:



Advertisements
Similar presentations
9.3 Rational Functions and Their Graphs
Advertisements

3.4 Rational Functions I. A rational function is a function of the form Where p and q are polynomial functions and q is not the zero polynomial. The domain.
Functions AII.7 e Objectives: Find the Vertical Asymptotes Find the Horizontal Asymptotes.
Rational Expressions, Vertical Asymptotes, and Holes.
Rational Functions I; Rational Functions II – Analyzing Graphs
Graphing Simple and General Rational Functions Section 9.2 and 9.3.
2.6 Rational Functions.
Graphs of Exponential and Logarithmic Functions
Rational Functions Sec. 2.7a. Definition: Rational Functions Let f and g be polynomial functions with g (x ) = 0. Then the function given by is a rational.
Section 5.2 – Properties of Rational Functions
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
4.4 Rational Functions Objectives:
Objectives: Find the domain of a Rational Function Determine the Vertical Asymptotes of a Rational Function Determine the Horizontal or Oblique Asymptotes.
EXAMPLE 1 Graph a rational function (m < n) Graph y =. State the domain and range. 6 x SOLUTION The degree of the numerator, 0, is less than the.
2.7 – Graphs of Rational Functions. By then end of today you will learn about……. Rational Functions Transformations of the Reciprocal function Limits.
ACT Class Openers:
Rational Functions. 5 values to consider 1)Domain 2)Horizontal Asymptotes 3)Vertical Asymptotes 4)Holes 5)Zeros.
2.6 & 2.7 Rational Functions and Their Graphs 2.6 & 2.7 Rational Functions and Their Graphs Objectives: Identify and evaluate rational functions Graph.
9.3 Rational Functions and Their Graphs Rational Function – A function that is written as, where P(x) and Q(x) are polynomial functions. The domain of.
Rational Functions - Rational functions are quotients of polynomial functions: where P(x) and Q(x) are polynomial functions and Q(x)  0. -The domain of.
 A asymptote is a line the graph of the function gets closer and closer to but does not touch.
Section 2.6 Rational Functions Part 1
Section 5.2 Properties of Rational Functions
ACTIVITY 35: Rational Functions (Section 4.5, pp )
Class Work Find the real zeros by factoring. P(x) = x4 – 2x3 – 8x + 16
Rational Functions Intro - Chapter 4.4.  Let x = ___ to find y – intercepts A rational function is the _______ of two polynomials RATIO Graphs of Rational.
Graphing Rational Functions
Asymptotes.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
R ATIONAL F UNCTIONS AND A SYMPTOTES. W HAT IS A R ATIONAL F UNCTION ? It is a function that can be written in the form p(x)/q(x) where p and q are both.
HOMEWORK: WB p.31 (don’t graph!) & p.34 #1-4. RATIONAL FUNCTIONS: HORIZONTAL ASYMPTOTES & INTERCEPTS.
Rational Functions and Asymptotes
Rational Functions and Their Graphs Objectives Find the domain of rational functions. Find horizontal and vertical asymptotes of graphs of rational functions.
Rational Functions Essential Questions
Lesson 1:____ Section 1.6 Powers, Polynomials, & Rational Functions Even Degree : U- shaped Odd Degree : Seat- shaped.
2.6. A rational function is of the form f(x) = where N(x) and D(x) are polynomials and D(x) is NOT the zero polynomial. The domain of the rational function.
0 As x becomes extremely large (x   ), which term will dominate? Lesson: _____ Section 2.6, 2.7 Graphs of Rational Functions No note taking, just show,
Notes Over 9.2 Graphing a Rational Function The graph of a has the following characteristics. Horizontal asymptotes: center: Then plot 2 points to the.
What is a Rational Function? A rational function is a function of the form where p (x) and q (x) are polynomials and q (x)  0. p (x)q (x)p (x)q (x) f.
Graphing Rational Expressions. Find the domain: Graph it:
Check It Out! Example 2 Identify the asymptotes, domain, and range of the function g(x) = – 5. Vertical asymptote: x = 3 Domain: {x|x ≠ 3} Horizontal asymptote:
Twenty Questions Rational Functions Twenty Questions
Lesson 21 Finding holes and asymptotes Lesson 21 February 21, 2013.
Rational Functions A rational function has the form
Rational Functions…… and their Graphs
Rational Functions and Models
Rational Functions.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
GRAPHING RATIONAL FUNCTIONS
Rational functions are quotients of polynomial functions.
Graph Simple Rational Functions
3.5: ASYMPTOTES.
Warm-Up  .
Warm UP! Factor the following:.
Graphing Rational Functions
Rational Functions and Asymptotes
Notes Over 9.3 Graphing a Rational Function (m < n)
Factor completely and simplify. State the domain.
Graphing Rational Functions
Simplifying rational expressions
2.6 Section 2.6.
3.4 Rational Functions I.
Graphing Rational Expressions
Section 8.4 – Graphing Rational Functions
Rational Functions A rational function f(x) is a function that can be written as where p(x) and q(x) are polynomial functions and q(x) 0 . A rational.
EQ: What other functions can be made from
Properties of Rational Functions
Domain of Rational Functions
4.3 Rational Functions I.
Graph Rational Functions
Presentation transcript:

G RAPHING R ATIONAL F UNCTIONS GRAPHS OF RATIONAL FUNCTIONS C ONCEPT S UMMARY Let p (x ) and q (x ) be polynomials with no common factors other than 1.The graph of the rational function has the following characteristics. f (x ) = = a m x m + a m – 1 x m – 1 + … + a 1 x + a 0 b n x n + b n – 1 x n – 1 + … + b 1 x + b 0 p (x )q (x )p (x )q (x ) 1. x - intercepts are the real zeros of p (x ) 2. vertical asymptote at each real zero of q (x ) 3. at most one horizontal asymptote

3. at most one horizontal asymptote at each zero of q (x ) G RAPHING R ATIONAL F UNCTIONS GRAPHS OF RATIONAL FUNCTIONS C ONCEPT S UMMARY f (x ) = = a m x m + a m – 1 x m – 1 + … + a 1 x + a 0 b n x n + b n – 1 x n – 1 + … + b 1 x + b 0 p (x )q (x )p (x )q (x ) If m > n, the graph has no horizontal asymptote. Its end behavior is the same as the graph of y = x m – n. a mb na mb n If m < n, the line y = 0 is a horizontal asymptote. If m = n, the line y = is a horizontal asymptote. a mb na mb n

Graphing a Rational Function (m < n) The bell-shaped graph passes through (–3, 0.4), (– 1, 2), (0, 4), (1,2), and (3, 0.4). The domain is all real numbers; the range is 0 < y  4. Graph y =. 4 x State domain and range. S OLUTION The numerator has no zeros, so there is no x -intercept. The denominator has no real zeros, so there is no vertical asymptote. The degree of the numerator (0) is less than the degree of the denominator (2), so the line y = 0 (the x-axis) is a horizontal asymptote.

Graphing a Rational Function (m = n) Graph y =. 3x 2 x 2 – 4 The degree of the numerator (2) is equal to the degree of the denominator (2), so the horizontal asymptote is y = = 3. ambnambn S OLUTION The numerator has 0 as its only zero, so the graph has one x -intercept at (0, 0). The denominator can be factored as (x + 2)(x – 2), so the denominator has zeros at 2 and – 2. This implies vertical asymptotes at x = – 2 and x = 2.

To the left of x = – 2 To the right of x = 2 Between x = – 2 and x = 2 Graphing a Rational Function (m = n) To draw the graph, plot points between and beyond vertical asymptotes. Graph y =. 3x 2 x 2 – –1 0 – – 4 – 3 – xy xy

Graphing a Rational Function (m > n) Graph y =. x 2 – 2x – 3 x + 4 The degree of the numerator (2) is greater than the degree of the denominator (1), so there is no horizontal asymptote and the end behavior of the graph of f is the same as the end behavior of the graph of y = x 2 – 1 = x. S OLUTION The numerator can be factored as ( x – 3) and ( x + 1); the x -intercepts are 3 and –1. The only zero of the denominator is – 4, so the only vertical asymptote is x = – 4.

Graphing a Rational Function (m > n) To draw the graph, plot points to the left and right of the vertical asymptote. To the left of x = – 4 To the right of x = – 4 Graph y =. x 2 – 2x – 3 x + 4 – 20.6 –19.2 – – 0.75 – –12 – 9 – 6 – y xy xy