Optimization 4.7. A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that.

Slides:



Advertisements
Similar presentations
4.4 Optimization Buffalo Bills Ranch, North Platte, Nebraska Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin,
Advertisements

3.7 Modeling and Optimization
OPTIMIZATION © Alex Teshon Daffy Durairaj.
Applications of Differentiation
4.4 Optimization Finding Optimum Values. A Classic Problem You have 40 feet of fence to enclose a rectangular garden. What is the maximum area that you.
4.5 Optimization Problems Steps in solving Optimization Problems 1.Understand the Problem Ask yourself: What is unknown? What are the given quantities?
4.6 Optimization The goal is to maximize or minimize a given quantity subject to a constraint. Must identify the quantity to be optimized – along with.
Optimization Problems
Applied Max and Min Problems Objective: To use the methods of this chapter to solve applied optimization problems.
4.7 Applied Optimization Wed Jan 14
CHAPTER 3 SECTION 3.7 OPTIMIZATION PROBLEMS. Applying Our Concepts We know about max and min … Now how can we use those principles?
Applied Max and Min Problems
Section 14.2 Application of Extrema
Section 4.4: Modeling and Optimization
{ ln x for 0 < x < 2 x2 ln 2 for 2 < x < 4 If f(x) =
4.7 Optimization Problems
4.4 Modeling and Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly,
4.7 Optimization Problems In this section, we will learn: How to solve problems involving maximization and minimization of factors. APPLICATIONS OF DIFFERENTIATION.
4.4. Optimization Optimization is one of the most useful applications of the derivative. It is the process of finding when something is at a maximum or.
4.7 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
Optimization Section 4.7 Optimization the process of finding an optimal value – either a maximum or a minimum under strict conditions.
3.7 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
Warmup- no calculator 1) 2). 4.4: Modeling and Optimization.
Applied max and min. Georgia owns a piece of land along the Ogeechee River She wants to fence in her garden using the river as one side.
Warm up 9/10/14 a) Find all relative extrema using the 2 nd derivative test: b) Find any points of inflection and discuss the concavity of the graph.
4.1 Extreme Values of Functions
Optimization Problems Example 1: A rancher has 300 yards of fencing material and wants to use it to enclose a rectangular region. Suppose the above region.
Sir Isaac Newton 1643 – 1727 Sir Isaac Newton 1643 – 1727 Isaac Newton was the greatest English mathematician of his generation. He laid the foundation.
Optimization. First Derivative Test Method for finding maximum and minimum points on a function has many practical applications called Optimization -
Section 4.7. Optimization – the process of finding an optimal value- either a maximum or a minimum under strict conditions Problem Solving Strategy –
Applied max and min. 12” by 12” sheet of cardboard Find the box with the most volume. V = x(12 - 2x)(12 - 2x)
Optimization Problems Section 4-4. Example  What is the maximum area of a rectangle with a fixed perimeter of 880 cm? In this instance we want to optimize.
2.7 Mathematical Models. Optimization Problems 1)Solve the constraint for one of the variables 2)Substitute for the variable in the objective Function.
Warm up Problem A rectangle is bounded by the x-axis and the semicircle. What are the dimensions of the rectangle with the largest area?
A25 & 26-Optimization (max & min problems). Guidelines for Solving Applied Minimum and Maximum Problems 1.Identify all given quantities and quantities.
4.4 Modeling and Optimization, p. 219 AP Calculus AB/BC.
Optimization Problems 1.Identify the quantity you’re optimizing 2.Write an equation for that quantity 3.Identify any constraints, and use them to get the.
Applied max and min. Steps for solving an optimization problem Read the problem drawing a picture as you read Label all constants and variables as you.
6.2: Applications of Extreme Values Objective: To use the derivative and extreme values to solve optimization problems.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Maximum-Minimum (Optimization) Problems OBJECTIVE  Solve maximum and minimum.
Ch. 5 – Applications of Derivatives 5.4 – Modeling and Optimization.
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999 With additional.
Optimization Problems. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along.
Optimization Problems
Chapter 12 Graphs and the Derivative Abbas Masum.
Sect. 3-7 Optimization.
Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
Ch. 5 – Applications of Derivatives
2.4 Quadratic Models.
3.7 Optimization Problems
Copyright © 2006 Pearson Education, Inc
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
AIM: How do we use derivatives to solve Optimization problems?
4.7 Modeling and Optimization
Applied Max and Min Problems
Calculus I (MAT 145) Dr. Day Wednesday Nov 8, 2017
Calculus I (MAT 145) Dr. Day Friday Nov 10, 2017
4.6 Optimization The goal is to maximize or minimize a given quantity subject to a constraint. Must identify the quantity to be optimized – along with.
Lesson 4-4: Modeling and Optimization
4.6 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
Optimization Problems
Using Calculus to Solve Optimization Problems
Optimization Problems
4.4 Modeling and Optimization
5.4 Modeling and Optimization
3.7 Optimization.
Tutorial 3 Applications of the Derivative
Copyright © Cengage Learning. All rights reserved.
4.5 Optimization Problems
Presentation transcript:

Optimization 4.7

A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that you can enclose? There must be a local maximum here, since the endpoints are minimums.

A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that you can enclose?

To find the maximum (or minimum) value of a function: 1 Write it in terms of one variable. 2 Find the first derivative and set it equal to zero. 3 Check the end points if necessary.

If the end points could be the maximum or minimum, you have to check. Notes: If the function that you want to optimize has more than one variable, use substitution to rewrite the function. If you are not sure that the extreme you’ve found is a maximum or a minimum, you have to check. 

Example 5: What dimensions for a one liter cylindrical can will use the least amount of material? We can minimize the material by minimizing the area. area of ends lateral area We need another equation that relates r and h :

Example 5: What dimensions for a one liter cylindrical can will use the least amount of material? area of ends lateral area

A rectangular field, bounded on one side by a building, is to be fenced in on the other 3 sides. If 3,000 feet of fence is to be used, find the dimensions of the largest field that can be fenced in. ww w CV at w = 750 Always concave down Max at: w = 750 and l = 1500 Max Area = 1,125,000 sq. ft.

A physical fitness room consists of a rectangular region with a semicircle on each end. If the perimeter of the room is to be a 200 meter running track, find the dimensions that will make the area of the rectangular region as large as possible. x 2r We want to maximize the area of the rectangle. 2 variables, so lets solve the above equation for r Concave down