“Teach A Level Maths” Vol. 2: A2 Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
30: Trig addition formulae © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
The Quotient Rule The following are examples of quotients: (a) (b) (c) (d) (c) can be divided out to form a simple function as there is a single polynomial.
The Quotient Rule. The following are examples of quotients: (a) (b) (c) (d) (c) can be divided out to form a simple function as there is a single polynomial.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
43: Quadratic Trig Equations and Use of Identities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
5: The Chain Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: The Product Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Grab a white board and try the Starter – Question 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
all slides © Christine Crisp
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 2: A2 Core Modules
Presentation transcript:

“Teach A Level Maths” Vol. 2: A2 Core Modules 12a: The Quotient Rule © Christine Crisp

Module C3 OCR "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

The following are examples of quotients: (b) (a) can be divided out to form a simple function as there is a single polynomial term in the denominator. For (b) we use the quotient rule.

The quotient rule gives us a way of differentiating functions which are divided. The rule is similar to the product rule. where u and v are functions of x. Memory aid:

Or using the dash notation

e.g. 1 Differentiate to find . Solution: and We now need to simplify.

We could simplify the numerator by taking out the common factor x, but it’s easier to multiply out the brackets. We don’t touch the denominator. Multiplying out numerator: Now collect like terms: and factorise: We leave the brackets in the denominator as the factorised form is simpler.

Quotients can always be turned into products. e.g. can be written as However, differentiation is usually more awkward if we do this. In the quotient above, and ( both simple functions ) In the product , and ( v needs the chain rule )

SUMMARY To differentiate a quotient: Check if it is possible to divide out. If so, do it and differentiate each term. Otherwise use the quotient rule: If , where u and v are both functions of x

Exercise Use the quotient rule, where appropriate, to differentiate the following. Try to simplify your answers: 1. 2. 3.

1. Solution: and

2. Solution: and

3. Solution: Divide out:

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

The following are examples of quotients: (b) (a) (a) can be divided out to form a simple function as there is a single polynomial term in the denominator. For (b) we use the quotient rule.

SUMMARY Otherwise use the quotient rule: If , where u and v are both functions of x To differentiate a quotient: Check if it is possible to divide out. If so, do it and differentiate each term.

Solution: e.g. 1 Differentiate to find . We now need to simplify.

We could simplify the numerator by taking out the common factor x, but it’s easier to multiply out the brackets. We don’t touch the denominator. Now collect like terms: and factorise: We leave the brackets in the denominator. ( A factorised form is considered to be simpler. ) Multiplying out numerator: