The binomial theorem 1 Objectives: Pascal’s triangle 1 1 2 1 1 3 3 1 Coefficient of (x + y) n when n is large Notation: ncrncr.

Slides:



Advertisements
Similar presentations
6.8 – Pascal’s Triangle and the Binomial Theorem.
Advertisements

Factoring trinomials ax² + bx +c a = any number besides 1 and 0
Math 143 Section 8.5 Binomial Theorem. (a + b) 2 =a 2 + 2ab + b 2 (a + b) 3 =a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 =a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b.
Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2)
Binomial Coefficient.
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Notes 9.2 – The Binomial Theorem. I. Alternate Notation A.) Permutations – None B.) Combinations -
What does Factorial mean? For example, what is 5 factorial (5!)?
2.4 Use the Binomial Theorem Test: Friday.
Pascal’s Triangle and the Binomial Theorem, then Exam!
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
5x 4 – 405 = 5(x 4 – 81) = 5(x 2 + 9)(x 2 – 9) = 5(x 2 + 9)(x + 3)(x – 3) by D. Fisher.
Multiplying Binomials Objectives: To Multiply Two Binomials FOIL To multiply the sum and difference of two expressions To square a binomial.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–5) CCSS Then/Now New Vocabulary Example 1:Real-World Example: Use Pascal’s Triangle Key Concept:
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
The Binomial Theorem Unit Binomial Theorem (a + b) 0 = 1a 0 b 0 (a + b) 1 = 1a 1 b 0 + 1a 0 b 1 (a + b) 2 = 1a 2 b 0 + 2a 1 b 1 + 1a 0 b 2 (a +
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
Pascal’s Triangle and the Binomial Theorem (x + y) 0 = 1 (x + y) 1 = 1x + 1y (x + y) 2 = 1x 2 + 2xy + 1y 2 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 +1 y 3 (x.
(a + b) 0 =1 (a + b) 1 = (a + b) 2 = (a + b) 3 = 1a 1 + 1b 1 1a 2 + 2ab + 1b 2 1a 3 + 3a 2 b + 3ab 2 + 1b 3 Binomial Expansion... What do we notice????
2-6 Binomial Theorem Factorials
Factoring trinomials ax² + bx +c a = any number besides 1 and 0.
How many different landscapes could be created?
The Binomial Theorem (a+b)2 (a+b)(a+b) a2 +2ab + b2
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
5.4 Binomial Coefficients Theorem 1: The binomial theorem Let x and y be variables, and let n be a nonnegative integer. Then Example 3: What is the coefficient.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
Term 1 Week 8 Warm Ups. Warm Up 9/28/15 1.Graph the function and identify the number of zeros: 2x 3 – 5x 2 + 3x – 2 (Hit the y = ) 2.Identify the expressions.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Combination
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
1(1)5 + 5(1)4(2x) + 10(1)3(2x)2 + 10(1)2(2x)3 + 5(1)(2x)4 + 1(2x)5
Splash Screen.
Splash Screen.
The Binomial Theorem.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Expansion Chapter 7
4.2 Pascal’s Triangle and the Binomial Theorem
Use the Binomial Theorem
Ch. 8 – Sequences, Series, and Probability
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
10.2b - Binomial Theorem.
Binomial Expansion.
The Binomial Theorem.
8.4 – Pascal’s Triangle and the Binomial Theorem
TCM – DO NOW A peer believes that (a+b)3 is a3 + b3 How can you convince him that he is incorrect? Write your explanation in your notes notebook.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Use the Binomial Theorem
Use Pascal’s triangle to expand the expression (3 x - 2 y) 3
Binomial Expansion L.O. All pupils understand why binomial expansion is important All pupils understand the pattern binomial expansion follows All pupils.
11.9 Pascal’s Triangle.
11.6 Binomial Theorem & Binomial Expansion
Chapter 12 Section 4.
©2001 by R. Villar All Rights Reserved
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
HW: Finish HPC Benchmark 1 Review
Unit 5 Polynomial Operations
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
Warm-Up 5 minutes Add or subtract. 1) (5x2 + 4x + 2) + (-2x + 7 – 3x2)
10.4 – Pascal’s Triangle and the Binomial Theorem
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
1) Expand Brackets 2) Factorise
Section 11.7 The Binomial Theorem
Presentation transcript:

The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr

Expansion of (x + y) n for n = 2, 3 and 4 (x + y) 2 =x(x + y) + y(x + y) =x 2 + 2xy + y 2 (x + y) 3 =(x + y)(x + y) 2 = = x(x 2 + 2xy + y 2 ) + y(x 2 + 2xy + y 2 ) (x + y)(x 2 + 2xy + y 2 ) = x 3 + 2x 2 y + xy 2 + x 2 y + 2xy 2 + y 3 = x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 =(x + y)(x + y) 3 = = x(x 3 + 3x 2 y + 3xy 2 + y 3 ) + y(x 3 + 3x 2 y + 3xy 2 + y 3 ) = x 4 + 3x 3 y + 3x 2 y 2 + xy 3 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 x 3 + 3x 2 y + 3xy 2 + y 3 + x 3 y + 3x 3 y 2 + 3x 2 y 3 + y 4

Expansion of (x + y) n (x + y) 2 =1x 2 + 2xy + 1y 2 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 + 1y 3 (x + y) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + 1y 4 (x + y) 1 =1x + 1y (x + y) 5 = 1x 5 + 5x 4 y + 10x 3 y x 2 y 3 + 5xy 4 + 1y 5 (1 + y) 5 = 1(1) 5 + 5(1) 4 y + 10(1) 3 y (1) 2 y 3 + 5(1)y 4 + 1y 5 = 1 + 5y + 10y y 3 + 5y 4 + y 5

Examples: Write down the expansions: (x + y) 2 =1x 2 + 2xy + 1y 2 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 + 1y 3 (x + 3y) 2 = 1x 2 + 2x(3y) + 1(3y) 2 =x 2 + 6xy + 9y 2 (4 + y) 3 = 1(4) 3 + 3(4) 2 y + 3(4)y 2 + 1y 3 = y + 12y 2 + y 3 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 + 1y 3 (2a + 3b) 3 = 1(2a) 3 + 3(2a) 2 3b + 3(2a)(3b) 2 + 1(3b) 3 = 8a a 2 b + 54ab b 3

Examples: Write the coefficient of x 3 in the expansion of (2x- 3) 4. (x + y) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + 1y 4 x 3 is the 2 nd term :4(2x) 3 (-3) =4(8x 3 )(-3) =-96x 3 The required coefficient is - 96 In the expansion of (1 + bx) 4, the coefficient of x 3 is Find the constant b. y 3 is the 4 th term :4(1)(bx) 3 =4b 3 x 3 = 1372  4b 3 = 1372 (x + y) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + 1y 4  b 3 = 343  b = 7