Isospin symmetry breaking corrections to the superallowed beta decays from the angular momentum and isospin projected DFT: brief overview focusing on sources.

Slides:



Advertisements
Similar presentations
The role of the isovector monopole state in Coulomb mixing. N.Auerbach TAU and MSU.
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Shell model studies along the N~126 line Zsolt Podolyák.
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Collective modes of excitation in deformed neutron-rich nuclei Kenichi May, 2009.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Cures and Pathologies of MR-EDF – Saclay November 2007 Denis Lacroix Cures and pathologies of Multi-Reference EDF methods Denis Lacroix, GANIL-Caen (MSU-USA)
Mean-field calculation based on proton-neutron mixed energy density functionals Koichi Sato (RIKEN Nishina Center) Collaborators: Jacek Dobaczewski (Univ.
Silvia Lenzi – ARIS 2014, Tokyo, June 2-6, 2014 Mirror Symmetry Silvia Lenzi University of Padova and INFN Silvia M. Lenzi Dipartimento di Fisica e Astronomia“Galileo.
Spin polarization of 23 Ne produced in heavy ion reactions M. Mihara 1, K. Matsuta 1, R. Matsumiya 1, T. Nagatomo 1*, M. Fukuda 1,T. Minamisono 2, S.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
*) for a period of Polish nuclear structure theory (NST) in numbers*) Brief overview of scientific activities Physics highlights - personal selection.
Tens of MeV + NNN ab initio Intro: effective low-energy theory for medium mass and heavy nuclei  mean-field ( or nuclear DFT )  beyond mean-field.
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
Application of DFT to the Spectroscopy of Odd Mass Nuclei N. Schunck Department of Physics  Astronomy, University of Tennessee, Knoxville, TN-37996, USA.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Terminating states as a unique laboratory for testing nuclear energy density functional Maciej Zalewski, UW under supervision of W. Satuła Kazimierz Dolny,
+ NNN tens of MeV ab initio Intro: effective low-energy theory for medium mass and heavy nuclei  mean-field ( or nuclear DFT )  beyond mean-field.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
Stephane Grévy : October 8, 2012 Unveiling the intruder deformed state in 34 Si 20 and few words about N=28 IFIN - Bucharest F. Rotaru.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
Tens of MeV + NNN ab initio Intro:  define fundaments my model is „standing on” sp mean-field ( or nuclear DFT )  beyond mean-field ( projection.
A Hybrid Configuration Mixing model with applications to odd mass nuclei near closed shells G. Colò The future of multi-reference DFT, Warsaw, June 26.
AUJOURD’ HUI…..et…. DEMAIN Keep contact with experimentalists, work together Beyond mean-field, but via Particle- Vibration Coupling.
1 S1242 High Precision Mass Measurements of Superallowed T=2 Nuclear Beta Decay Emitters.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
Nucleon: T = ½, m t =  ½. For a nucleus, by extension: m t = ½ (Z - N). If neutrons and protons are really “identical” as far as the strong interaction.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Isovector scenario for nuclei near the N=Z line Anatoli Afanasjev S. Frauendorf Kai Neergard J. Sheikh.
Outline : towards effective superfluid local density approximation (SLDA) - general remarks pairing: volume-, mixed- or surface-type - selectivity/resolution.
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
n-p pairing in N=Z nuclei
Constraints on Nuclear Functionals from Collective Vibrations Gianluca Colò The 2 nd LACM-EFES- JUSTIPEN Workshop Oak Ridge, 25/1/2008.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Héloïse Goutte CERN Summer student program 2009 Introduction to Nuclear physics; The nucleus a complex system Héloïse Goutte CEA, DAM, DIF
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Kilka słów o strukturze jądra atomowego
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
S. L. Tabor – Florida State University ATLAS Users Meeting August 8, 2009 Sam Tabor - Florida State University Intruder states approaching the Island of.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Exotic neutron-rich nuclei
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
g-ray spectroscopy of the sd-shell hypernuclei
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Relativistic descriptions of Nuclear magnetic moments Jie Meng 孟 杰 北京航空航天大学物理与核能工程学院 School of Physics and Nuclear Energy Engineering Beihang University.
The role of isospin symmetry in medium-mass N ~ Z nuclei
Isospin symmetry breaking effects in atomic nuclei
Isovector and isoscalar pairing in low-lying states of N = Z nuclei
Isospin Symmetry test on the semimagic 44Cr
Menu Isospin mixing in nuclei Isospin symmetry breaking Hadrons Nuclei
Presentation transcript:

Isospin symmetry breaking corrections to the superallowed beta decays from the angular momentum and isospin projected DFT: brief overview focusing on sources of theoretical errors and on limitations of the „static” MR DFT Extension of the static approach: Summary & perspectives  examples: 32 Cl- 32 S, 62 Zn- 62 Ga, 38 Ca- 38 K  towards NO CORE shell model with basis cutoff dictated by the self-consistent p-h configurations

10 cases measured with accuracy ft ~0.1% 3 cases measured with accuracy ft ~0.3% ~2.4% 1.5% 0.3% - 1.5% (Conserved Vector Current) Towner & Hardy Phys. Rev. C77, (2008) weak eigenstates mass eigenstates CKM Cabibbo-Kobayashi -Maskawa (4) (4) < |V ud | 2 +|V us | 2 +|V ub | 2 =0.9997(6) |V ud | = adopted from J.Hardy’s, ENAM’08 presentation

~ ~ | ground state in N-Z=+/-2 (e-e) nucleus antialigned state in N=Z (o-o) nucleus Project on good isospin (T=1) and angular momentum (I=0) ( and perform Coulomb rediagonalization) <T~1,T z =+/-1,I=0| |I=0,T~1,T z =0> T +/- Project on good isospin (T=1) and angular momentum (I=0) ( and perform Coulomb rediagonalization) | 2 =2(1-  C ) I=0 +,T=1,T z =-1 I=0 +,T=1, T z =0

superallowed 0 +  0 +  -decay |V ud | (a)  -decay mirror T=1/2 nuclei -decay (b) (c) (d) |V ud | 2 +|V us | 2 +|V ub | 2 superallowed 0 +  0 +  -decay  -decay -decay mirror T=1/2 nuclei (a) (b) (c) (d) A  C -  C [%] (SV) (HT) W. Satuła, J. Dobaczewski, W. Nazarewicz, M. Rafalski, Phys. Rev. Lett. 106, (2011); Phys. Rev. C 86, (2012). I.S. Towner and J. C. Hardy, Phys. Rev. C 77, (2008). (a) (b) (c,d) O. Naviliat-Cuncic and N. Severijns, Eur. Phys. J. A 42, 327 (2009); Phys. Rev. Lett. 102, (2009). V ud = (26) Ft=3071.4(8)+0.85(85); Ft=3070.4(9); V ud = (23) PRL Ft=3073.6(12); V ud = (27) PRC H. Liang, N. V. Giai, and J. Meng, Phys. Rev. C 79, (2009)

jj j j j jj jj l s i ll i s s Relative orientation of shape and current  E [MeV]  C [%] i A=34 SV A=34 SV 34 Ar  34 Cl 34 Cl  34 S  E I=0,T=1  E HF  E IV (TO) x x x y y y V ud = (27) Ft=3073.6(12) |V ud | 2 +|V us | 2 +|V ub | 2 = = (67) Functional dependence: SV: V ud = (27) Ft=3075.0(12) |V ud | 2 +|V us | 2 +|V ub | 2 = = (67) SHZ2: a sym =42.2MeV!!! Basis-size dependence: ~10% Configuration dependence:

   nn ………… {|I> (1) } k 1 {|I> (2) } k 2 {|I> (3) } k 3 {|I> (n) } k n ………….. E i |I i >

32 Cl I=1 + I=0 + I=2 + (2 + ) (0 + )  E (MeV) I=3 + theory exp W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014)

(keV) T Cl I=1 + theory (keV) theoryexperiment T , S I=1 + experiment 7002keV W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014) 0keV D. Melconian et al., Phys. Rev. Lett. 107, (2011). Experiment: δ C ≈ 5.3(9)% SM+WS calculations: δ C ≈ 4.6(5)%.

ground state EXP (old) SM (MSDI3) SM (GXPF1) Excitation energy of 0 + states [MeV] SV mix (6 Slaters) HF  ph  ph  ph  2p2h  ph I=0 + before mixing EXP (new) K.G. Leach et al. PRC88, (2013)

EXP 11 1 2 22  g.s. + Energy (MeV) normalized  C [%] E HF (MeV) 11 1 Z X~YX~Y ~200keV

Static approach gives:  C =8.9% I=0 +, T= Ca 38 K EXP  C =1.5%  C =1.7%  E [MeV] mixing: 4 Slaters 3 Slaters

We have to go BEYOND STATIC MR-EDF in order to address high-quality spectroscopic data available today. First attempts are very encouraging at least concerning energy spectra!!! Isospin symmetry breaking corrections from the „static” double-projected DFT are in very good agreement with the Hardy–Towner results.

T z =-1  T z =0 mixing the X,Y,Z orientations in light nuclei A  C [%] averages mixing T&H W.Satula, J.Dobaczewski, M.Konieczka, W.Nazarewicz, Acta Phys. Polonica B45, 167 (2014)

Excitation energy [MeV] angular momentum T=1 T=0 Mixing of states projected from the antialigned configurations: nK pK /2 3/25/27/2 SV SHZ2  E (MeV) K 42 Sc ( )

T=1 states are not representable in a „separable” mean-field! T=0  T=0 T=1  Mean-field can differentiate between  and  only through time-odd polarizations! aligned configurations     anti-aligned configurations or  or    CORE T z =-/+1 I=0 +,T=1 (N-Z=-/+2) (N-Z=0) T z =0 | | 2 =2(1-  C )

 anti-aligned configurations or    E-E CORE T=1 states are not representable in a „separable” mean-field!!! T=0 T=1 