3-D simulation of Si-Prot Charge distribution, signal development D. Attié, P. Colas, E. Delagnes, S. Turnbull - Introduction - Orders of magnitude - Simulation.

Slides:



Advertisements
Similar presentations
Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
Advertisements

Detector R&D Jan Timmermans Programme: ≥ 2003
M. Chefdeville NIKHEF, Amsterdam MPGD, Hawaii 07
Simulations and Resistive Films Results and status report By: Stephen Turnbull.
1 Pixel Readout of GEMs Motivation The Setup Results Next Steps A. Bamberger, K. Desch, J. Ludwig, M. Titov, U. Renz, N. Vlasov, P. Wienemann, A. Zwerger.
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
Gas pixel detector for x-ray observation
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
Readout of a TPC with the MEDIPIX2 CMOS chip as direct anode Saclay/DapniaP. Colas Y. Giomataris NIKHEFA. Fornaini H. van der Graaf J. Timmermans J. Visschers.
Experience with resistive coatings at Saclay and Carleton, Nikhef, Neuchatel Use of resistive coatings for: -Spreading the charge to improve resolution.
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
ECFA Meeting, Valencia – November 8, First TimePix tests at CERN David Attié ECFA Meeting – Valencia – 8 November 2006.
Gain fluctuations and Neff Analysis of March 2010 data Neff measurement Gain fluctuation measurements with TimePix Beijing, 30/03/20101 P. Colas - FJPPL-FCPPL-LCTPC.
Zeuthen, January 16, 2008 P. Colas - Micromegas panels1 Micromegas panels Status and plans D. Attié, P. Colas, X. Coppolani, M. Dixit, M. Riallot, F. Sénée,
Large Area Endplate Prototype for the LC TPC 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes, S.
Annual Meeting – October 8, Status of the CEA Saclay R&D activities on pixelised readout of TPC David Attié, Paul Colas,
GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay.
TPC Large Prototype cosmic trigger and Micromegas panels D. Attié, P. Colas, E. Delagnes, M. Dixit, A. Giganon, M. Riallot, F. Senée, S. Turnbull Large.
Annual Meeting 2008 – October 6 th 1 David Attié P. Colas, X. Coppolani, E. Delagnes, A. Giganon, I. Giomataris Status of Saclay.
Resistive anode readout Stephen Turnbull CEA IRFU Saclay.
Resistive bulk Micromegas panels for the TPC D. Attié, P. Colas, E. Delagnes, M. Dixit, A. Giganon, M. Riallot, F. Senée, S. Turnbull Introduction Status.
GOSSIP a new vertex detector for ATLAS Harry van der Graaf NIKHEF, Amsterdam Univ. of Bonn, Nov 23, 2006.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
Micropattern on CMOS pixels NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers.
21 April 2004LCWS 2004 Paris1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct pixel segmented anode) NIKHEF:
FIRST TEST RESULTS FROM A MICROMEGAS LARGE TPC PROTOTYPE P. Colas (CEA Saclay), on behalf of the LC-TPC collaboration Micromegas with resistive anode:
Micromegas TPC Results from beam tests 7-module design ILD TPC mechanics and integration D. Attié, M. Carty, P. Colas, G. De Lentdecker, M. Dixit, M. Riallot,
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
The Gossip gaseous detector for the ATLAS Upgraded ‘SC’T Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group ATLAS Tracker Upgrade.
Piggyback seal Micromegas D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas, J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R.
1 Readout of a TPC by Means of the MediPix CMOS Pixel Sensor NIKHEFAuke-Pieter Colijn Arno Aarts Alessandro Fornaini Maximilien Chefdeville Harry van der.
23 March 2005International TPC R&D Meeting Berkeley 1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct.
Resistive anode studies D. Attié, P. Colas, E. Delagnes, M. Dixit, A. Giganon, M. Riallot, F. Senée, S. Turnbull Micromegas Large Prototype panels Studies.
Summary of MM meeting at CEA Saclay, 25/26 Jan 2010 Some selected topics.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 Status ‘Si readout’ TPC at NIKHEF NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan.
P. Colas on behalf of LCTPC. Strategy for Micromegas The Micromegas option is studied within the same (EUDET) facility as the other options (see R. Diener’s.
Resistive coatings P. Colas, CEA/Irfu Saclay Definition of surface resistivity Practical examples of coating applications Measurement techniques Applications.
Micromegas (Ingrid)+TimePix 8-chip modules
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
November 8, 2006ECFA ILC Workshop1 Recent developments for digital TPC readout Jan Timmermans - NIKHEF Micro Pattern Gas Detector: GridPix Integration.
GEM+Timepix2 in the framework of project Gabriele Croci, Matteo Alfonsi on behalf of CERN-GDD Group RD51 Miniweek, February 2010.
LCWS Bangalore, March 13, 2006 P. Colas, Digital TPC R&D1 R&D for a digital TPC The SiTPC project The digital TPC concept and advantages VLSI electronics:
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
TPC Large Prototype panels D. Attié, P. Colas, E. Delagnes, M. Dixit, A. Giganon, M. Riallot, F. Senée, S. Turnbull Status of the Micromegas Large Prototype.
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Zeuthen, January 16, 2008 P. Colas - Micromegas panels1 Micromegas panels Status and plans D. Attié, P. Colas, X. Coppolani, M. Dixit, M. Riallot, F. Sénée,
P. Colas D. Attié, P. Colas, I. Giomataris, W. Wang (Irfu) M. Dixit, N. Shiell, P. Hayman (Carleton U.) G. De Lentdecker (Brussels)
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Micromegas panels D. Attié, P. Colas, E. Delagnes, M. Dixit, A. Giganon, M. Riallot, F. Senée, Y-H Shin S. Turnbull, R. Yonamine (Carleton, KEK, Saclay)
Grid Pix Field Simulations and precision needed for a module Peter Kluit, Jan Timmermans Prepared 16 May 2016.
CEA DSM Irfu Micromegas R&D for ILC and sLHC at Saclay P. Colas, I. Giomataris, M. Titov.
Charge difussion through resistive strip read-outs. Javier Galan, G. Cauvin, A. Delbart, E. Ferrer-Ribas, A. Giganon, F. Jeanneau, O. Maillard, P. Schune.
16 December 2008NIKHEF Annual Meeting1 Detector R&D Jan Timmermans “Small is beautiful” –Micropixels Microelectronics –Micro Pattern Gas Detectors »……..
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
Grid Pix Field Simulations and precision needed for a module
Large Area Endplate Prototype for the LC TPC
Test of a new anode resistive coating for a Micromegas TPC
Calibration On pixel calibration capacitor; 20fF
Recent test results from a fully integrated Micromegas TPC prototype
TPC Paul Colas Technical meeting, Lyon.
Avalanche flutuations with InGrid/TimePix
A PiggyBack Micromegas Ioannis Giomataris – CEA-Saclay
Traditional techniques for Resistive Gaseous Detectors
Presentation transcript:

3-D simulation of Si-Prot Charge distribution, signal development D. Attié, P. Colas, E. Delagnes, S. Turnbull - Introduction - Orders of magnitude - Simulation - Results - Data

April 17, 2008RD51 workshop2 Introduction A single spark kills a TimePix chip –High current, hot plasma -> destroys circuit –A sufficiently thick SiProt layer reduces and softens the sparks (See M.Fransen’s talk) How protection works? –Allows charge to stay over the pad, lowering the local potential –Limits the current thru the amplifier –Protects mechanically –Avoids points, softens the surface? Any damage to the signal? –Amplitude loss? –Charge sharing with neighbouring pads? –Short-circuit of the amplifiers –Introduces dead time? TO ANSWER, NEED A SIMULATION

April 17, 2008RD51 workshop3 Orders of magnitude R neighbour R thru e l L R neighb =  L/el =  /e for square pads For 10 µ aSi,  =10 11 .cm, R=10 14  /square R thru =  e/Ll ~  R neighb /R thru = L 2 /e 2 e<<L to avoid spreading the charge by side conductivity. The charge preferentially escapes thru the pad, but with an extremely high resistance. C neighb =  r   Le/l =  r   /e for square pads C thru =  r   Ll/e (note  r ~11 for Si) The influence acts preferentially thru the pad if L>>e

April 17, 2008RD51 workshop4 R neighbour R thru e l L Also R thru >> 1/C  to leave the induced signal (OK with  cm within 3 orders of magnitude for 10 ns signals) Equivalently, RC time constant >> 10ns The signal is fully capacitive 1/C thru  1/C neighbour 

5 pixels gas Siprot 25 Pads 25 TimePix Preamps gas: 10x10x10 elements/pad SiProt: 10x10x10 elements/pad « central » gas element. C network (special ones fo edges) « central » SiProt element RC network (special ones fo edges) Pads:Metallisation of the last SiProt elements « Full » shape 100% of pixel aluminized « Cross » shape 12% of pixel Al, rest SiN 2 Charge Injection at the gas / SiProt interface in the central pixel Size = 4 elts 3 positions. Top= HT (ac grounded) SiProt Simulation with Analog Artist E. Delagnes, S.Turnbull

April 17, 2008RD51 workshop6 Note that SiProt is very different from the charge spreading for improving the resolution (M. Dixit et al.). In that case, there is an insulating layer ( µ) below a low-resistivity coating: 1 M  /sq, 100 nm (i.e. 10 .cm). In that case, the charge obeys the telegraph equation (see Stephen Turnbull’s talk). In SiProt, the signal is capacitive and the charge slowly evacuates in thru the coating and the amplifier. This Analog Artist simulation can also be used for double layers with 2 different resistivities. Run time for SiProt: 10 h per set of parameters. 25 AFTER Preamps gas resistive insulator

April 17, 2008RD51 workshop7 Signal development Charge pulse: 1ns trapezoidal current pulse Injection in the middle Injection in the corner Injection in between

April 17, 2008RD51 workshop8 Results Pads fully covered with Al

April 17, 2008RD51 workshop9 Results Pads 12% covered.

April 17, 2008RD51 workshop10 thickness Signal frac. on central pad (Full pads) Signal frac. on central pad (cross) 10 µ94 %76 % 15 µ83 %57 % 20 µ70 %44 % Charge injected in the middle of the pad

April 17, 2008RD51 workshop11 Pad Response Function

April 17, 2008RD51 workshop12 Data With 20 µ SiProt, the spreading over several pads is clearly seen, but the grid misalignment also contributes.

April 17, 2008RD51 workshop13 Data With 15 micron SiProt, pixel multiplicity of isolated clusters shows 91% of single pixels at a gain of Difficult to relate precisely to the measurement, but no evidence for strong spreading. InGrid-equipped TimePix, Nikhef

April 17, 2008RD51 workshop14 Conclusions Charge spreading is limited both in space and time for SiProt thickness less than  m. Fully covered anodes spread less than partially covered anodes Saclay David Attié Max Chefdeville Paul Colas Xavier Coppolani Eric Delagnes Arnaud Giganon Ioannis Giomataris Marc Riallot Stephen Turnbull CERN Michael Campbell Xavier Llopart Nikhef Yevgen Bilevych Marten Bosma Max Chefdeville Martin Fransen Fred Hartjes Jan Timmermans Harry van der Graaf Jan Visschers TimePix-Micromegas collaboration